Balance recovery schemes following mediolateral gyroscopic moment perturbations during walking

Maintaining balance during human walking hinges on the exquisite orchestration of whole-body angular momentum (WBAM). This study delves into the regulation of WBAM during gait by examining balance strategies in response to upper-body moment perturbations in the frontal plane. A portable Angular Mome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-12, Vol.19 (12), p.e0315414
Hauptverfasser: Mohseni, Omid, Mahmoudi, Asghar, Firouzi, Vahid, Seyfarth, Andre, Vallery, Heike, A Sharbafi, Maziar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maintaining balance during human walking hinges on the exquisite orchestration of whole-body angular momentum (WBAM). This study delves into the regulation of WBAM during gait by examining balance strategies in response to upper-body moment perturbations in the frontal plane. A portable Angular Momentum Perturbator (AMP) was utilized in this work, capable of generating perturbation torques on the upper body while minimizing the impact on the center of mass (CoM) excursions. Ten participants underwent upper-body perturbations during either the mid-stance or touch-down moment in both ipsilateral and contralateral directions in the frontal plane. Our findings emphasize the predominant role of the hip strategy and foot placement as primary mechanisms for recovering from WBAM perturbations, regardless of the perturbation's timing or direction. Specifically, hip add/abduction torque and step width were significantly modulated following perturbations during the stance and swing phases, respectively, to reject frontal-plane balance threats. The knee and ankle torque modulation were not found to be effective in the recovery process. Additionally, we observed that recovery from WBAM perturbations occurs promptly within the same stride in which the perturbation occurs, unlike other perturbation scenarios, such as platform translation. These insights have the potential to enhance the development of assistive devices and more robust controllers for bipedal robots.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0315414