Anti-necroptotic effects of human Wharton's jelly-derived mesenchymal stem cells in skeletal muscle cell death model via secretion of GRO-α
Human mesenchymal stem cells (hMSCs) have therapeutic applications and potential for use in regenerative medicine. However, the use of hMSCs in research and clinical medicine is limited by a lack of information pertaining to their donor-specific functional attributes. In this study, we compared the...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-12, Vol.19 (12), p.e0313693 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human mesenchymal stem cells (hMSCs) have therapeutic applications and potential for use in regenerative medicine. However, the use of hMSCs in research and clinical medicine is limited by a lack of information pertaining to their donor-specific functional attributes. In this study, we compared the characteristics of same-donor derived placenta (PL) and Wharton's jelly (WJ)-derived hMSCs, we also compared their mechanism of action in a skeletal muscle disease in vitro model. The same-donor-derived hWJ- and hPL-MSCs exhibited typical hMSC characteristics. However, GRO-α was differentially expressed in hWJ- and hPL-MSCs. hWJ-MSCs, which secreted a high amount of GRO-α, displayed a higher ability to inhibit necroptosis in skeletal muscle cells than hPL-MSCs. This demonstrates the anti-necroptotic therapeutic effect of GRO-α in the skeletal muscle cell death model. Furthermore, GRO-α also exhibited the anti-necroptotic effect in a Duchenne muscular dystrophy (DMD) mouse model. Considering their potential to inhibit necroptosis in skeletal muscle cells, hWJ-MSCs and the derived GRO-α are novel treatment options for skeletal muscle diseases such as DMD. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0313693 |