Multi-objective optimal decision for orderly power utilization based on improved ε-constraint method in active distribution networks
With the increasing demand for electricity load in China, orderly power utilization are important measures to alleviate electricity shortages during peak periods. This article establishes a multi-objective optimization model for orderly power utilization in active distribution networks is establishe...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-10, Vol.19 (10), p.e0309437 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the increasing demand for electricity load in China, orderly power utilization are important measures to alleviate electricity shortages during peak periods. This article establishes a multi-objective optimization model for orderly power utilization in active distribution networks is established, with the optimization objectives of minimizing the total operation cost, minimizing the cost for users, and minimizing the load fluctuation of the system. This model contains a large number of integer variables and nonlinear constraints, which is difficult to solve. To reduce computation time, convex relaxation techniques are adopted to transform the original model into a mixed-integer second-order cone programming (MISOCP) model, which has lower computational complexity. Furthermore, The improved ε-constraint method is proposed to solve the model, which can directly and quickly find the compromise optimal solution of the multi-objective problem. By using simplex search algorithm, the proposed method dose not need to traverse all grid points, which can significantly reduce computation time. Finally, case study on the the IEEE-33 bus distribution network demonstrate the effectiveness of the proposed method. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0309437 |