Sulfate activation of wheat straw ash to enhance the properties of high-performance concrete with recycled aggregates and waste tire steel fibers

A sustainable alternative to conventional concrete involves using recycled aggregates (RA) instead of natural aggregates (NA) and incorporating wheat straw ash (WSA) as a partial replacement for Portland cement. The demand for high-performance concrete (HPC) is rising due to the need for architectur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-10, Vol.19 (10), p.e0311838
Hauptverfasser: Althoey, Fadi, Zaid, Osama, Elhadi, Khaled Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A sustainable alternative to conventional concrete involves using recycled aggregates (RA) instead of natural aggregates (NA) and incorporating wheat straw ash (WSA) as a partial replacement for Portland cement. The demand for high-performance concrete (HPC) is rising due to the need for architecturally complex structures and long-span bridges, but HPC's low ductility necessitates reinforcement. Waste tire steel fibers (WTSFs) are gaining popularity for their tensile strength. However, WSA-RA concrete's low early strength is a challenge. Chemical activators like sodium sulfate can enhance early-age strength. This study evaluated the durability and strength of fiber-reinforced concrete with both inactivated and activated WSA. Tests included compressive strength, indirect tensile strength, modulus of rupture (MOR), acid attack resistance, chloride penetration, sorptivity, and water absorption. Activated WSA-RA concrete showed significantly improved early strength. The mixture with 30% RA, 40% WSA, WTSFs, and activator exhibited the highest strength at 90 days. At 60% RA content, activated concrete with 40% WSA and 2.5% WTSFs outperformed the control. Durability was enhanced with a 14-17% reduction in water absorption and sorptivity and a 25.2% decrease in chloride penetration. Acid resistance improved by 26%. X-ray diffraction (XRD) confirmed these findings with elevated hydration product peaks. This study demonstrates that chemical activation of WSA optimizes the engineering properties of WSA-modified HPC with WTSFs and RA, providing a sustainable solution to their challenges.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0311838