Rhizosphere microbial community structure in high-producing, low-input switchgrass families

Switchgrass (Panicum virgatum L.) is a native, low-input North American perennial crop primarily grown for bioenergy, livestock forage, and industrial fiber. To achieve no-input switchgrass production that meets biomass needs, several switchgrass genotypes have been identified that have a low or neg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-10, Vol.19 (10), p.e0308753
Hauptverfasser: Stonoha-Arther, Christina, Panke-Buisse, Kevin, Duff, Alison J, Molodchenko, Andrew, Casler, Michael D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Switchgrass (Panicum virgatum L.) is a native, low-input North American perennial crop primarily grown for bioenergy, livestock forage, and industrial fiber. To achieve no-input switchgrass production that meets biomass needs, several switchgrass genotypes have been identified that have a low or negative response to nitrogen fertilizer, i.e., the biomass accumulation with added nitrogen is less than or equal to that when grown without nitrogen. In order to improve the viability of low-input switchgrass production, a more detailed understanding of the biogeochemical mechanisms active in these select genotypes is needed. 16S and ITS amplicon sequencing and qPCR of key functional genes were applied to switchgrass rhizospheres to elucidate microbial community structure in high-producing, no-input switchgrass families. Rhizosphere microbial community structure differed strongly between sites, and nitrogen responsiveness.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0308753