Optimization on overall performance of Modified Ultrafine Cementitious Grout Materials (MUCG) and hydration mechanism analysis

Given the challenges encountered in injecting grout into micro-cracked rock masses, a modified ultrafine cementitious grout material (MUCG) was developed using ultrafine cement, polyvinyl alcohol (PVA) fibers, and a high-efficiency superplasticizer. To identify the optimal ratio of constituents for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-10, Vol.19 (10), p.e0309312
Hauptverfasser: Zhou, Junxia, Zha, Lanchang, Meng, Shiyu, Zhang, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given the challenges encountered in injecting grout into micro-cracked rock masses, a modified ultrafine cementitious grout material (MUCG) was developed using ultrafine cement, polyvinyl alcohol (PVA) fibers, and a high-efficiency superplasticizer. To identify the optimal ratio of constituents for grouting these rock masses, extreme difference and multiple linear regression analyses were conducted based on test results of flowability and mechanical properties. A mix comprising 9% silica fume, 0.2% bentonite, 0.3% PVA fibers, 0.15% superplasticizer, and 2% setting accelerator was identified as the optimal mix. The microstructure characteristics of the optimal MUCG (MUCGop) grout cemented body were analyzed using XRD, FTIR, BET, and SEM. XRD and FTIR analyses indicated that a substantial amount of C-(A)S-H gel, CH, and AFt were formed within the first 3 days, highlighting the early strength characteristics of MUCGop. Over time, the content of C-A-H stabilized at 22%, the amount of CH decreased from 19% to 14%, whereas the amount of AFt increased to 15.9% by Day 28. Unexpectedly, CaCO3 content increased due to carbonation, reaching 37.3% by Day 28. BET and SEM analyses demonstrated that the specific surface area and porosity (most probable pore size) gradually decreased over time. At various ages, mesopores (cumulative pore diameter, median pore diameter) initially increased and then decreased. Micro-cracks appeared in the cemented body by Day 7, resulting in a slight decrease in strength (3.92%) from Day 3 to Day 7. The formation of well-developed needle-like AFt, C-(A)S-H gel, and small-volume plate-like CH contributed to uniform cementation and a denser structure. From Day 7 to Day 28, there was a slight increase in strength, by an amount of 10.66%. These findings have significant scientific implications for understanding the mechanisms of grouting reinforcement in micro-cracked rock masses.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0309312