Breast tumor segmentation using neural cellular automata and shape guided segmentation in mammography images

Using computer-aided design (CAD) systems, this research endeavors to enhance breast cancer segmentation by addressing data insufficiency and data complexity during model training. As perceived by computer vision models, the inherent symmetry and complexity of mammography images make segmentation di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-10, Vol.19 (10), p.e0309421
Hauptverfasser: Ali, Mudassar, Wu, Tong, Hu, Haoji, Mahmood, Tariq
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using computer-aided design (CAD) systems, this research endeavors to enhance breast cancer segmentation by addressing data insufficiency and data complexity during model training. As perceived by computer vision models, the inherent symmetry and complexity of mammography images make segmentation difficult. The objective is to optimize the precision and effectiveness of medical imaging. The study introduces a hybrid strategy combining shape-guided segmentation (SGS) and M3D-neural cellular automata (M3D-NCA), resulting in improved computational efficiency and performance. The implementation of Shape-guided segmentation (SGS) during the initialization phase, coupled with the elimination of convolutional layers, enables the model to effectively reduce computation time. The research proposes a novel loss function that combines segmentation losses from both components for effective training. The robust technique provided aims to improve the accuracy and consistency of breast tumor segmentation, leading to significant improvements in medical imaging and breast cancer detection and treatment. This study enhances breast cancer segmentation in medical imaging using CAD systems. Combining shape-guided segmentation (SGS) and M3D-neural cellular automata (M3D-NCA) is a hybrid approach that improves performance and computational efficiency by dealing with complex data and not having enough training data. The approach also reduces computing time and improves training efficiency. The study aims to improve breast cancer detection and treatment methods in medical imaging technology.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0309421