Estimating population infection rates from non-random testing data: Evidence from the COVID-19 pandemic

To effectively respond to an emerging infectious disease outbreak, policymakers need timely and accurate measures of disease prevalence in the general population. This paper presents a new methodology to estimate real-time population infection rates from non-random testing data. The approach compare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-09, Vol.19 (9), p.e0311001
Hauptverfasser: Benatia, David, Godefroy, Raphael, Lewis, Joshua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To effectively respond to an emerging infectious disease outbreak, policymakers need timely and accurate measures of disease prevalence in the general population. This paper presents a new methodology to estimate real-time population infection rates from non-random testing data. The approach compares how the observed positivity rate varies with the size of the tested population and applies this gradient to infer total population infections. Applying this methodology to daily testing data across U.S. states during the first wave of the COVID-19 pandemic, we estimated widespread undiagnosed COVID-19 infections. Nationwide, we found that for every identified case, there were 12 population infections. Our prevalence estimates align with results from seroprevalence surveys, alternate approaches to measuring COVID-19 infections, and total excess mortality during the first wave of the pandemic.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0311001