Salt stress memory in tall fescue: Interaction of different stress stages, pollination system and genetic diversity

The effects of salinity memory and its interaction with genetic diversity for drought tolerance and pollination system in terms of morphological, physiological, root characteristics and spectral reflectance indices (SRIs) in tall fescue is still unknown. Four tall fescue genotypes (two drought-sensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-09, Vol.19 (9), p.e0310061
Hauptverfasser: Safari, Maryam, Majidi, Mohammad Mahdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of salinity memory and its interaction with genetic diversity for drought tolerance and pollination system in terms of morphological, physiological, root characteristics and spectral reflectance indices (SRIs) in tall fescue is still unknown. Four tall fescue genotypes (two drought-sensitive and two drought-tolerant) were manually controlled to produce four selfed (S1) and four open-pollinated (OP) progeny genotypes (finally eight progeny genotypes). Then all genotypes were assessed for two years in greenhouse under five salinity treatments including control treatment (C), twice salinity stress treatment (primary mild salinity stress in two different stages and secondary at the end stage) (S1t1S2 and S1t2S2), once severe salinity stress treatment (secondary only, S2), and foliar spray of salicylic acid (SA) simultaneously with secondary salinity stress (H2S2). Results indicated that obligate selfing (S1) caused to inbreeding depression in RWC, plant growth, catalase activity, root length and the ratio of root/shoot (R/S). Once salinity stress treatment (S2) led to depression in most measured traits, while pre-exposure to salinity (salinity memory) (S1t1S2 and S1t2S2) improved photosynthetic pigments, proline, antioxidant enzymes and R/S. Salinity memory was more pronounced in drought-sensitive genotypes, while it was more evident in OP than S1 population. Foliar spray of salicylic acid (SA) was almost equally effective in reducing the effects of salinity stress in both populations. The efficacy of application was more pronounced in tolerant genotypes compared to sensitive ones. The possibility of modeling correlated spectral reflectance indices (SRIs) for prediction of different morphological, physiological and root characteristics will be discussed.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0310061