Innovative models for enhanced student adaptability and performance in educational environments
In the domain of adaptable educational environments, our study is dedicated to achieving three key objectives: forecasting the adaptability of student learning, predicting and evaluating student performance, and employing aspect-based sentiment analysis for nuanced insights into student feedback. Us...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-09, Vol.19 (9), p.e0307221 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the domain of adaptable educational environments, our study is dedicated to achieving three key objectives: forecasting the adaptability of student learning, predicting and evaluating student performance, and employing aspect-based sentiment analysis for nuanced insights into student feedback. Using a systematic approach, we commence with an extensive data preparation phase to ensure data quality, followed by applying efficient data balancing techniques to mitigate biases. By emphasizing higher education or educational data mining, feature extraction methods are used to uncover significant patterns in the data. The basis of our classification method is the robust WideResNeXT architecture, which has been further improved for maximum efficiency by hyperparameter tweaking using the simple Modified Jaya Optimization Method. The recommended WResNeXt-MJ model has emerged as a formidable contender, demonstrating exceptional performance measurements. The model has an average accuracy of 98%, a low log loss of 0.05%, and an extraordinary precision score of 98.4% across all datasets, demonstrating its efficacy in enhancing predictive capacity and accuracy in flexible learning environments. This work presents a comprehensive helpful approach and a contemporary model suitable for flexible learning environments. WResNeXt-MJ's exceptional performance values underscore its capacity to enhance pupil achievement in global higher education significantly. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0307221 |