Divergent effects of azithromycin on purple corn (Zea mays L.) cultivation: Impact on biomass and antioxidant compounds

The present study assessed the impact of using irrigation water contaminated with Azithromycin (AZM) residues on the biomass and antioxidant compounds of purple corn; for this purpose, the plants were cultivated under ambient conditions, and the substrate used consisted of soil free from AZM residue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-08, Vol.19 (8), p.e0307548
Hauptverfasser: Mamani Ramos, Yoselin, Huamán Castilla, Nils Leander, Colque Ayma, Elvis Jack, Mamani Condori, Noemi, Campos Quiróz, Clara Nely, Vilca, Franz Zirena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study assessed the impact of using irrigation water contaminated with Azithromycin (AZM) residues on the biomass and antioxidant compounds of purple corn; for this purpose, the plants were cultivated under ambient conditions, and the substrate used consisted of soil free from AZM residues, mixed with compost in a ratio of 1:1 (v/v). The experiment was completely randomized with four replications, with treatments of 0, 1, 10, and 100 μg/L of AZM. The results indicate that the presence of AZM in irrigation water at doses of 1 and 10 μg/L increases the weight of dry aboveground biomass, while at an amount of 100 μg/L, it decreases. Likewise, this study reveals that by increasing the concentration of AZM from 1 to 10 μg/L, total polyphenols and monomeric anthocyanins double, in contrast, with an increase to 100 μg/L, these decrease by 44 and 53%, respectively. It has been demonstrated that purple corn exposed to the antibiotic AZM at low doses has a notable antioxidant function in terms of DPPH and ORAC. The content of flavonols, phenolic acids, and flavanols increases by 57, 28, and 83%, respectively, when the AZM concentration is from 1 to 10 μg/L. However, with an increase to 100 μg/L, these compounds decrease by 17, 40, and 42%, respectively. On the other hand, stem length, root length, and dry weight of root biomass are not significantly affected by the presence of AZM in irrigation water.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0307548