Detection of Mycobacterium tuberculosis from tongue swabs using sonication and sequence-specific hybridization capture

Tongue swabs hold promise as a non-invasive sample for diagnosing tuberculosis (TB). However, their utility as replacements for sputum has been limited by their varied diagnostic performance in PCR assays compared to sputum. The use of silica-based DNA extraction methods may limit sensitivity due to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-08, Vol.19 (8), p.e0308235
Hauptverfasser: Yan, Alexander J, Olson, Alaina M, Weigel, Kris M, Luabeya, Angelique K, Heiniger, Erin, Hatherill, Mark, Cangelosi, Gerard A, Yager, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tongue swabs hold promise as a non-invasive sample for diagnosing tuberculosis (TB). However, their utility as replacements for sputum has been limited by their varied diagnostic performance in PCR assays compared to sputum. The use of silica-based DNA extraction methods may limit sensitivity due to incomplete lysis of Mycobacterium tuberculosis (MTB) cells and co-extraction of non-target nucleic acid, which may inhibit PCR. Specificity may also be compromised because these methods are labor-intensive and prone to cross-contamination. To address these limitations, we developed a sample preparation method that combines sonication for MTB lysis and a sequence-specific MTB DNA capture method using hybridization probes immobilized on magnetic beads. In spiked tongue swabs, our hybridization capture method demonstrated a 100-fold increase in MTB DNA yield over silica-based Qiagen DNA extraction and ethanol precipitation. In a study conducted on clinical samples from South Africa, our protocol had 74% (70/94) sensitivity and 98% (41/42) specificity for detecting active pulmonary TB with sputum Xpert MTB/RIF Ultra as the reference standard. While hybridization capture did not show improved sensitivity over Qiagen DNA extraction and ethanol precipitation, it demonstrated better specificity than previously reported methods and was easier to perform. With integration into point-of-care platforms, these strategies have the potential to help enable rapid non-sputum-based TB diagnosis across key underserved patient populations.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0308235