Seismic hazard analysis and financial impact assessment of railway infrastructure in the US West Coast: A machine learning approach
This research examines the seismic hazard impact on railway infrastructure along the U.S. West Coast (Washington, Oregon and California), using machine learning to explore how measures of seismic hazard such as fault density, earthquake frequency, and ground shaking relate to railway infrastructure...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-08, Vol.19 (8), p.e0308255 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research examines the seismic hazard impact on railway infrastructure along the U.S. West Coast (Washington, Oregon and California), using machine learning to explore how measures of seismic hazard such as fault density, earthquake frequency, and ground shaking relate to railway infrastructure accidents. By comparing linear and non-linear models, it finds non-linear approaches superior, particularly noting that higher fault densities and stronger peak ground shaking correlate with increased infrastructure accident rates. Shallow earthquakes with magnitudes of 3.5 or greater and hypocentral depths |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0308255 |