Probability density and information entropy of machine learning derived intracranial pressure predictions
Even with the powerful statistical parameters derived from the Extreme Gradient Boost (XGB) algorithm, it would be advantageous to define the predicted accuracy to the level of a specific case, particularly when the model output is used to guide clinical decision-making. The probability density func...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-07, Vol.19 (7), p.e0306028 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Even with the powerful statistical parameters derived from the Extreme Gradient Boost (XGB) algorithm, it would be advantageous to define the predicted accuracy to the level of a specific case, particularly when the model output is used to guide clinical decision-making. The probability density function (PDF) of the derived intracranial pressure predictions enables the computation of a definite integral around a point estimate, representing the event's probability within a range of values. Seven hold-out test cases used for the external validation of an XGB model underwent retinal vascular pulse and intracranial pressure measurement using modified photoplethysmography and lumbar puncture, respectively. The definite integral ±1 cm water from the median (DIICP) demonstrated a negative and highly significant correlation (-0.5213±0.17, p< 0.004) with the absolute difference between the measured and predicted median intracranial pressure (DiffICPmd). The concordance between the arterial and venous probability density functions was estimated using the two-sample Kolmogorov-Smirnov statistic, extending the distribution agreement across all data points. This parameter showed a statistically significant and positive correlation (0.4942±0.18, p< 0.001) with DiffICPmd. Two cautionary subset cases (Case 8 and Case 9), where disagreement was observed between measured and predicted intracranial pressure, were compared to the seven hold-out test cases. Arterial predictions from both cautionary subset cases converged on a uniform distribution in contrast to all other cases where distributions converged on either log-normal or closely related skewed distributions (gamma, logistic, beta). The mean±standard error of the arterial DIICP from cases 8 and 9 (3.83±0.56%) was lower compared to that of the hold-out test cases (14.14±1.07%) the between group difference was statistically significant (p |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0306028 |