Attribution classification method of APT malware based on multi-feature fusion

In recent years, with the development of the Internet, the attribution classification of APT malware remains an important issue in society. Existing methods have yet to consider the DLL link library and hidden file address during the execution process, and there are shortcomings in capturing the loc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-06, Vol.19 (6), p.e0304066
Hauptverfasser: Zhang, Jian, Liu, Shengquan, Liu, Zhihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, with the development of the Internet, the attribution classification of APT malware remains an important issue in society. Existing methods have yet to consider the DLL link library and hidden file address during the execution process, and there are shortcomings in capturing the local and global correlation of event behaviors. Compared to the structural features of binary code, opcode features reflect the runtime instructions and do not consider the issue of multiple reuse of local operation behaviors within the same APT organization. Obfuscation techniques more easily influence attribution classification based on single features. To address the above issues, (1) an event behavior graph based on API instructions and related operations is constructed to capture the execution traces on the host using the GNNs model. (2) ImageCNTM captures the local spatial correlation and continuous long-term dependency of opcode images. (3) The word frequency and behavior features are concatenated and fused, proposing a multi-feature, multi-input deep learning model. We collected a publicly available dataset of APT malware to evaluate our method. The attribution classification results of the model based on a single feature reached 89.24% and 91.91%. Finally, compared to single-feature classifiers, the multi-feature fusion model achieves better classification performance.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0304066