Genetic differentiation at extreme latitudes in the socially plastic sweat bee Halictus rubicundus

The sweat bee Halictus rubicundus is an important pollinator with a large latitudinal range and many potential barriers to gene flow. Alongside typical physical barriers, including mountain ranges and oceans, the climate may also impose restrictions on gene flow in this species. The climate influenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-05, Vol.19 (5), p.e0302688-e0302688
Hauptverfasser: Michels, Bas A, Beekman, Mariska M, Field, Jeremy, Gruber, Jodie, Pannebakker, Bart A, Savill, Charlotte, Boulton, Rebecca A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The sweat bee Halictus rubicundus is an important pollinator with a large latitudinal range and many potential barriers to gene flow. Alongside typical physical barriers, including mountain ranges and oceans, the climate may also impose restrictions on gene flow in this species. The climate influences voltinism and sociality in H. rubicundus, which is bivoltine and can nest socially at warmer lower latitudes but tends to be univoltine and solitary in the cooler north. Variation in voltinism could result in phenological differences, potentially limiting gene flow, but a previous study found no evidence for this in H. rubicundus populations in mainland Britain. Here we extend the previous study to consider populations of H. rubicundus at extreme northern and southern latitudes in the UK. We found that bees from a population in the far north of Scotland were genetically differentiated from bees collected in Cornwall in the south-west of England. In contrast, bees collected across the Irish Sea in Northern Ireland showed slight genetic overlap with both the Scottish and Cornish bees. Our results suggest that when populations at extreme latitudes are considered, phenology and the climate may act alongside physical barriers such as the Scottish Highlands and the Irish Sea to restrict gene flow in H. rubicundus. We discuss the implications of our results for local adaptation in the face of rapidly changing selection pressures which are likely under climate change.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0302688