Vitamin D regulates COVID-19 associated severity by suppressing the NLRP3 inflammasome pathway

The role of vitamin D3 (VitD3) in modulating innate and adaptive immunity has been reported in different disease contexts. Since the start of the coronavirus disease-2019 (COVID-19) pandemic, the role of VitD3 has been highlighted in many correlational and observational studies. However, the exact m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-05, Vol.19 (5), p.e0302818
Hauptverfasser: Khalil, Bariaa, Sharif-Askari, Narjes Saheb, Hafezi, Shirin, Sharif-Askari, Fatemeh Saheb, Al Anouti, Fatme, Hamid, Qutayba, Halwani, Rabih
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The role of vitamin D3 (VitD3) in modulating innate and adaptive immunity has been reported in different disease contexts. Since the start of the coronavirus disease-2019 (COVID-19) pandemic, the role of VitD3 has been highlighted in many correlational and observational studies. However, the exact mechanisms of action are not well identified. One of the mechanisms via which VitD3 modulates innate immunity is by regulating the NLRP3-inflammasome pathway, being a main underlying cause of SARS-CoV-2-induced hyperinflammation. Blood specimens of severe COVID-19 patients with or without VitD3 treatment were collected during their stay in the intensive care unit and patients were followed up for 29 days. qPCR, western blot, and ELISA were done to investigate the mechanism of action of VitD3 on the NLRP3 inflammasome activation. We here report the ability of VitD3 to downregulate the NLRP3-inflammsome pathway in severe COVID-19 patients. Lower inflammasome pathway activation was observed with significantly lower gene and protein expression of NLRP3, cleaved caspase-1, ASC and IL-1β among severe COVID-19 patients treated with VitD3. The reduction of the inflammasome pathway was associated with a reduction in disease severity markers and enhancement of type I IFN pathway. Our data reveals an important anti-inflammatory effect of VitD3 during SARS-CoV-2 infection. Further investigations are warranted to better characterize the ability of VitD3 to control disease pathogenesis and prevent progression to severe states. This will allow for a more efficient use of a low cost and accessible treatment like VitD3.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0302818