Computational exploration of novel ROCK2 inhibitors for cardiovascular disease management; insights from high-throughput virtual screening, molecular docking, DFT and MD simulation

Cardiovascular disorders are the world's major cause of death nowadays. To treat cardiovascular diseases especially coronary artery diseases and hypertension, researchers found potential ROCK2 (Rho-associated coiled-coil-containing protein kinase 2) target due to its substantial role in NO-cGMP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-11, Vol.18 (11), p.e0294511-e0294511
Hauptverfasser: Ali, Iqra, Iqbal, Muhammad Nasir, Ibrahim, Muhammad, Haq, Ihtisham Ul, Alonazi, Wadi B, Siddiqi, Abdul Rauf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cardiovascular disorders are the world's major cause of death nowadays. To treat cardiovascular diseases especially coronary artery diseases and hypertension, researchers found potential ROCK2 (Rho-associated coiled-coil-containing protein kinase 2) target due to its substantial role in NO-cGMP and RhoA/ROCK pathway. Available drugs for ROCK2 are less effective and some of them depict side effects. Therefore, a set of novel compounds were screened that can potentially inhibit the activity of ROCK2 and help to treat cardiovascular diseases by employing In-silico techniques. In this study, we undertook ligand based virtual screening of 50 million compound's library, to that purpose shape and features (contain functional groups) based pharmacophore query was modelled and validated by Area Under Curve graph (AUC). 2000 best hits were screened for Lipinski's rule of 5 compliance. Subsequently, these selected compounds were docked into the binding site of ROCK2 to gain insights into the interactions between hit compounds and the target protein. Based on binding affinity and RMSD scores, a final cohort of 15 compounds were chosen which were further refined by pharmacokinetics, ADMET and bioactivity scores. 2 potential hits were screened using density functional theory, revealing remarkable biological and chemical activity. Potential inhibitors (F847-0007 and 9543495) underwent rigorous examination through MD Simulations and MMGBSA analysis, elucidating their stability and strong binding affinities. Results of current study unveil the potential of identified novel hits as promising lead compounds for ROCK2 associated with cardiovascular diseases. These findings will further investigate via In-vitro and In-vivo studies to develop novel druglike molecules against ROCK2.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0294511