On distance-based topological indices and co-indices of fractal-type molecular graphs and their respective graph entropies

In graph theory, a topological index is a numerical value that is in good correlation with certain physical properties of a molecule. It serves as an indicator of how a chemical structure behaves. The Shannon's entropy describes a comparable loss of data in information transmission networks. It...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-11, Vol.18 (11), p.e0290047-e0290047
Hauptverfasser: Malik, Mehar Ali, Imran, Muhammad, Adeel, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In graph theory, a topological index is a numerical value that is in good correlation with certain physical properties of a molecule. It serves as an indicator of how a chemical structure behaves. The Shannon's entropy describes a comparable loss of data in information transmission networks. It has found use in the field of information theory. Inspired by the concept of Shannon's entropy, we have calculated some topological descriptors for fractal and Cayley-type dendrimer trees. We also find the entropy that is predicted by these indices.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0290047