Hazardous materials facility siting optimization and ranking: A transportation risk mitigation framework

Hazardous material transportation problems have widely been studied in the past especially in the context of routing, scheduling, and network design problems. Yet, the combined hazardous material facility location-routing problem has not been studied adequately. We emphasize that locating a hazardou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-11, Vol.18 (11), p.e0290723-e0290723
Hauptverfasser: Khan, Musharraf Ahmad, Mehran, Babak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hazardous material transportation problems have widely been studied in the past especially in the context of routing, scheduling, and network design problems. Yet, the combined hazardous material facility location-routing problem has not been studied adequately. We emphasize that locating a hazardous material facility is a rich process, and a good site can mitigate the potential transportation risk beforehand. A methodological framework is proposed which allows evaluation and ranking of potential sites based on hierarchical relationship utilities. The proposed method attempts to improve the risk functions and applies a stochastic analysis to measure the risk, which relaxes some assumptions in deterministic analysis, and is more realistic while avoiding overestimation of the risk. The study covers multi-objective optimization considering the decision-makers' preferences on network segments and risk to the population and water bodies. Potential hazardous material facility sites' rank is determined by the probability of optimality and one-to-one relationship utilities with the points of interests. Results show that the proposed stochastic analysis offers more flexibility to select and rank the potential sites.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0290723