Impact of COVID-19 pandemic in the Brazilian maternal mortality ratio: A comparative analysis of Neural Networks Autoregression, Holt-Winters exponential smoothing, and Autoregressive Integrated Moving Average models
The acute respiratory infection caused by severe acute respiratory syndrome coronavirus disease (COVID-19) has resulted in increased mortality among pregnant, puerperal, and neonates. Brazil has the highest number of maternal deaths and a distressing fatality rate of 7.2%, more than double the count...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-01, Vol.19 (1), p.e0296064 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The acute respiratory infection caused by severe acute respiratory syndrome coronavirus disease (COVID-19) has resulted in increased mortality among pregnant, puerperal, and neonates. Brazil has the highest number of maternal deaths and a distressing fatality rate of 7.2%, more than double the country's current mortality rate of 2.8%. This study investigates the impact of the COVID-19 pandemic on the Brazilian Maternal Mortality Ratio (BMMR) and forecasts the BMMR up to 2025.
To assess the impact of the COVID-19 pandemic on the BMMR, we employed Holt-Winters, Autoregressive Integrated Moving Average (ARIMA), and Neural Networks Autoregression (NNA). We utilized a retrospective time series spanning twenty-five years (1996-2021) to forecast the BMMR under both a COVID-19 pandemic scenario and a controlled COVID-19 scenario.
Brazil consistently exhibited high maternal mortality values (mean BMMR [1996-2019] = 57.99 ±6.34/100,000 live births) according to World Health Organization criteria. The country experienced its highest mortality peak in the historical BMMR series in the second quarter of 2021 (197.75/100,000 live births), representing a more than 200% increase compared to the previous period. Holt-Winter and ARIMA models demonstrated better agreement with prediction results beyond the sample data, although NNA provided a better fit to previous data.
Our study revealed an increase in BMMR and its temporal correlation with COVID-19 incidence. Additionally, it showed that Holt-Winter and ARIMA models can be employed for BMMR forecasting with lower errors. This information can assist governments and public health agencies in making timely and informed decisions. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0296064 |