Identification of broken conductor faults in interconnected transmission systems based on discrete wavelet transform
Interconnected transmission systems are increasingly spreading out in HV networks to enhance system efficiency, decrease reserve capacity, and improve service reliability. However, the protection of multi-terminal lines against Broken Conductor Fault (BCF) imposes significant difficulties in such ne...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-01, Vol.19 (1), p.e0296773-e0296773 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interconnected transmission systems are increasingly spreading out in HV networks to enhance system efficiency, decrease reserve capacity, and improve service reliability. However, the protection of multi-terminal lines against Broken Conductor Fault (BCF) imposes significant difficulties in such networks as the conventional distance relays cannot detect BCF, as the BCF is not associated with a significant increase in current or reduction in voltage Traditionally, the earth fault relays in transmission lines may detect such fault; Nonetheless, it suffers from a long delay time. Moreover, many of the nearby earth fault relays detect the BCF causing unnecessary trips and badly affecting the system stability. In this article, a novel single-end scheme based on extracting transient features from current signals by discrete wavelet transform (DWT) is proposed for detecting BCFs in interconnected HV transmission systems. The suggested scheme unit (SSU) is capable of accurately detecting all types of BCFs and shunt high impedance faults (SHIFs). It also adaptively calculates the applied threshold values. The accurate selectivity in multi-terminal lines is achieved based on a fault directional element by analyzing transient power polarity. The SSU discriminates between internal/external faults effectively utilizing the time difference observed between the first spikes of aerial and ground modes in the current signals. Different fault scenarios have been simulated on the IEEE 9-Bus, 230 kV interconnected system. The achieved results confirm the effectiveness, robustness, and reliability of SSU in detecting correctly BCFs as well as the SHIFs within only 24.5 ms. The SSU has confirmed its capability to be implemented in interconnected systems without any requirement for communication or synchronization between the SSU installed in multi-terminal lines. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0296773 |