Venom diversity in Naja mossambica: Insights from proteomic and immunochemical analyses reveal intraspecific differences
Intraspecific variations in snake venom composition have been extensively documented, contributing to the diverse clinical effects observed in envenomed patients. Understanding these variations is essential for developing effective snakebite management strategies and targeted antivenom therapies. We...
Gespeichert in:
Veröffentlicht in: | PLoS neglected tropical diseases 2024-04, Vol.18 (4), p.e0012057-e0012057 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intraspecific variations in snake venom composition have been extensively documented, contributing to the diverse clinical effects observed in envenomed patients. Understanding these variations is essential for developing effective snakebite management strategies and targeted antivenom therapies. We aimed to comprehensively investigate venoms from three distinct populations of N. mossambica from Eswatini, Limpopo, and KwaZulu-Natal regions in Africa in terms of their protein composition and reactivity with three commercial antivenoms (SAIMR polyvalent, EchiTAb+ICP, and Antivipmyn Africa).
Naja mossambica venoms from Eswatini region exhibited the highest content of neurotoxic proteins, constituting 20.70% of all venom proteins, compared to Limpopo (13.91%) and KwaZulu-Natal (12.80%), and was characterized by the highest diversity of neurotoxic proteins, including neurotoxic 3FTxs, Kunitz-type inhibitors, vespryns, and mamba intestinal toxin 1. KwaZulu-Natal population exhibited considerably lower cytotoxic 3FTx, higher PLA2 content, and significant diversity in low-abundant proteins. Conversely, Limpopo venoms demonstrated the least diversity as demonstrated by electrophoretic and mass spectrometry analyses. Immunochemical assessments unveiled differences in venom-antivenom reactivity, particularly concerning low-abundance proteins. EchiTAb+ICP antivenom demonstrated superior reactivity in serial dilution ELISA assays compared to SAIMR polyvalent.
Our findings reveal a substantial presence of neurotoxic proteins in N. mossambica venoms, challenging previous understandings of their composition. Additionally, the detection of numerous peptides aligning to uncharacterized proteins or proteins with unknown functions underscores a critical issue with existing venom protein databases, emphasizing the substantial gaps in our knowledge of snake venom protein components. This underscores the need for enhanced research in this domain. Moreover, our in vitro immunological assays suggest EchiTAb+ICP's potential as an alternative to SAIMR antivenom, requiring confirmation through prospective in vivo neutralization studies. |
---|---|
ISSN: | 1935-2735 1935-2727 1935-2735 |
DOI: | 10.1371/journal.pntd.0012057 |