Generating synthetic population for simulating the spatiotemporal dynamics of epidemics
Agent-based models have gained traction in exploring the intricate processes governing the spread of infectious diseases, particularly due to their proficiency in capturing nonlinear interaction dynamics. The fidelity of agent-based models in replicating real-world epidemic scenarios hinges on the a...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2024-02, Vol.20 (2), p.e1011810-e1011810 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Agent-based models have gained traction in exploring the intricate processes governing the spread of infectious diseases, particularly due to their proficiency in capturing nonlinear interaction dynamics. The fidelity of agent-based models in replicating real-world epidemic scenarios hinges on the accurate portrayal of both population-wide and individual-level interactions. In situations where comprehensive population data are lacking, synthetic populations serve as a vital input to agent-based models, approximating real-world demographic structures. While some current population synthesizers consider the structural relationships among agents from the same household, there remains room for refinement in this domain, which could potentially introduce biases in subsequent disease transmission simulations. In response, this study unveils a novel methodology for generating synthetic populations tailored for infectious disease transmission simulations. By integrating insights from microsample-derived household structures, we employ a heuristic combinatorial optimizer to recalibrate these structures, subsequently yielding synthetic populations that faithfully represent agent structural relationships. Implementing this technique, we successfully generated a spatially-explicit synthetic population encompassing over 17 million agents for Shenzhen, China. The findings affirm the method's efficacy in delineating the inherent statistical structural relationship patterns, aligning well with demographic benchmarks at both city and subzone tiers. Moreover, when assessed against a stochastic agent-based Susceptible-Exposed-Infectious-Recovered model, our results pinpointed that variations in population synthesizers can notably alter epidemic projections, influencing both the peak incidence rate and its onset. |
---|---|
ISSN: | 1553-7358 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1011810 |