An epigenetic timer regulates the transition from cell division to cell expansion during Arabidopsis petal organogenesis
A number of studies have demonstrated that epigenetic factors regulate plant developmental timing in response to environmental changes. However, we still have an incomplete view of how epigenetic factors can regulate developmental events such as organogenesis, and the transition from cell division t...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2024-03, Vol.20 (3), p.e1011203-e1011203 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1011203 |
---|---|
container_issue | 3 |
container_start_page | e1011203 |
container_title | PLoS genetics |
container_volume | 20 |
creator | Huang, Ruirui Irish, Vivian F |
description | A number of studies have demonstrated that epigenetic factors regulate plant developmental timing in response to environmental changes. However, we still have an incomplete view of how epigenetic factors can regulate developmental events such as organogenesis, and the transition from cell division to cell expansion, in plants. The small number of cell types and the relatively simple developmental progression required to form the Arabidopsis petal makes it a good model to investigate the molecular mechanisms driving plant organogenesis. In this study, we investigated how the RABBIT EARS (RBE) transcriptional repressor maintains the downregulation of its downstream direct target, TCP5, long after RBE expression dissipates. We showed that RBE recruits the Groucho/Tup1-like corepressor TOPLESS (TPL) to repress TCP5 transcription in petal primordia. This process involves multiple layers of changes such as remodeling of chromatin accessibility, alteration of RNA polymerase activity, and histone modifications, resulting in an epigenetic memory that is maintained through multiple cell divisions. This memory functions to maintain cell divisions during the early phase of petal development, and its attenuation in a cell division-dependent fashion later in development enables the transition from cell division to cell expansion. Overall, this study unveils a novel mechanism by which the memory of an epigenetic state, and its cell-cycle regulated decay, acts as a timer to precisely control organogenesis. |
doi_str_mv | 10.1371/journal.pgen.1011203 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069179514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A790632366</galeid><doaj_id>oai_doaj_org_article_efd0cae730e9495da9cb7fdc3a5dec17</doaj_id><sourcerecordid>A790632366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-7b530fa67c45feb16a83f164f31598a6d5e3085803dc7dd97690fa375e260e933</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7of-A9GAsOjFjEnTNO3lsPgxsLjg123IJCedDG3TTVIZ_72p0112ZC-UXCS8POc94U1Olr0geEkoJ-92bvS9bJdDA_2SYEJyTB9lp4QxuuAFLh7fO59kZyHsMKasqvnT7IRWRZETXJxm-1WPYLDJA6JVKNoOPPLQjK2MEFDcAope9sFG63pkvOuQgrZF2v60YZKiOwiwHyYsKXr0tm_QysuN1W4INqABomyR843s3dQqac-yJ0a2AZ7P-3n2_cP7b5efFlfXH9eXq6uFKnMcF3zDKDay5KpgBjaklBU1pCwMJayuZKkZUFyxClOtuNY1L-uEU84gLzHUlJ5nrw6-Q-uCmEMLguKyJrxmpEjE-kBoJ3di8LaT_pdw0oo_Qrq1kD6F04IAo7GSwGmyLmqmZa023GhFJdOgCE9eb-Zu3t2MEKLobJjykT24MYi8plVeUUbyhL7-C334cjPVyNTf9sal51CTqVjxGpc0p2WZqOUDVFoaOqtcD8Ym_ajg7VFBYiLsYyPHEMT665f_YD__O3v945i9uMduQbZxG1w7Tj8tHIPFAVTeheDB3D0SwWKahdvkxDQLYp6FVPZyDnjcdKDvim4_P_0Nh7cDyQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069179514</pqid></control><display><type>article</type><title>An epigenetic timer regulates the transition from cell division to cell expansion during Arabidopsis petal organogenesis</title><source>PubMed Central Free</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Huang, Ruirui ; Irish, Vivian F</creator><contributor>Mittelsten Scheid, Ortrun</contributor><creatorcontrib>Huang, Ruirui ; Irish, Vivian F ; Mittelsten Scheid, Ortrun</creatorcontrib><description>A number of studies have demonstrated that epigenetic factors regulate plant developmental timing in response to environmental changes. However, we still have an incomplete view of how epigenetic factors can regulate developmental events such as organogenesis, and the transition from cell division to cell expansion, in plants. The small number of cell types and the relatively simple developmental progression required to form the Arabidopsis petal makes it a good model to investigate the molecular mechanisms driving plant organogenesis. In this study, we investigated how the RABBIT EARS (RBE) transcriptional repressor maintains the downregulation of its downstream direct target, TCP5, long after RBE expression dissipates. We showed that RBE recruits the Groucho/Tup1-like corepressor TOPLESS (TPL) to repress TCP5 transcription in petal primordia. This process involves multiple layers of changes such as remodeling of chromatin accessibility, alteration of RNA polymerase activity, and histone modifications, resulting in an epigenetic memory that is maintained through multiple cell divisions. This memory functions to maintain cell divisions during the early phase of petal development, and its attenuation in a cell division-dependent fashion later in development enables the transition from cell division to cell expansion. Overall, this study unveils a novel mechanism by which the memory of an epigenetic state, and its cell-cycle regulated decay, acts as a timer to precisely control organogenesis.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1011203</identifier><identifier>PMID: 38442104</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Arabidopsis ; Arabidopsis Proteins - metabolism ; Botanical research ; Cell division ; Cell Division - genetics ; Chromatin remodeling ; DNA methylation ; DNA-directed RNA polymerase ; Environmental changes ; Epigenesis, Genetic ; Epigenetic inheritance ; Epigenetics ; Flowers ; Gene expression ; Gene Expression Regulation, Plant ; Genetic aspects ; Histones ; Molecular modelling ; Mutation ; Organogenesis ; Petals ; Physiological aspects ; Primordia ; Proteins ; Transcription factors ; Transcription Factors - metabolism ; Yeast</subject><ispartof>PLoS genetics, 2024-03, Vol.20 (3), p.e1011203-e1011203</ispartof><rights>Copyright: © 2024 Huang, Irish. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Huang, Irish. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Huang, Irish. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c620t-7b530fa67c45feb16a83f164f31598a6d5e3085803dc7dd97690fa375e260e933</cites><orcidid>0000-0002-2943-6604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.plos.org/plosone/article/file?id=10.1371/journal.pgen.1011203&type=printable$$EPDF$$P50$$Gplos$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.plos.org/plosone/article?id=10.1371/journal.pgen.1011203$$EHTML$$P50$$Gplos$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,2928,23866,27924,27925,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38442104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mittelsten Scheid, Ortrun</contributor><creatorcontrib>Huang, Ruirui</creatorcontrib><creatorcontrib>Irish, Vivian F</creatorcontrib><title>An epigenetic timer regulates the transition from cell division to cell expansion during Arabidopsis petal organogenesis</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>A number of studies have demonstrated that epigenetic factors regulate plant developmental timing in response to environmental changes. However, we still have an incomplete view of how epigenetic factors can regulate developmental events such as organogenesis, and the transition from cell division to cell expansion, in plants. The small number of cell types and the relatively simple developmental progression required to form the Arabidopsis petal makes it a good model to investigate the molecular mechanisms driving plant organogenesis. In this study, we investigated how the RABBIT EARS (RBE) transcriptional repressor maintains the downregulation of its downstream direct target, TCP5, long after RBE expression dissipates. We showed that RBE recruits the Groucho/Tup1-like corepressor TOPLESS (TPL) to repress TCP5 transcription in petal primordia. This process involves multiple layers of changes such as remodeling of chromatin accessibility, alteration of RNA polymerase activity, and histone modifications, resulting in an epigenetic memory that is maintained through multiple cell divisions. This memory functions to maintain cell divisions during the early phase of petal development, and its attenuation in a cell division-dependent fashion later in development enables the transition from cell division to cell expansion. Overall, this study unveils a novel mechanism by which the memory of an epigenetic state, and its cell-cycle regulated decay, acts as a timer to precisely control organogenesis.</description><subject>Arabidopsis</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Botanical research</subject><subject>Cell division</subject><subject>Cell Division - genetics</subject><subject>Chromatin remodeling</subject><subject>DNA methylation</subject><subject>DNA-directed RNA polymerase</subject><subject>Environmental changes</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Flowers</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetic aspects</subject><subject>Histones</subject><subject>Molecular modelling</subject><subject>Mutation</subject><subject>Organogenesis</subject><subject>Petals</subject><subject>Physiological aspects</subject><subject>Primordia</subject><subject>Proteins</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7of-A9GAsOjFjEnTNO3lsPgxsLjg123IJCedDG3TTVIZ_72p0112ZC-UXCS8POc94U1Olr0geEkoJ-92bvS9bJdDA_2SYEJyTB9lp4QxuuAFLh7fO59kZyHsMKasqvnT7IRWRZETXJxm-1WPYLDJA6JVKNoOPPLQjK2MEFDcAope9sFG63pkvOuQgrZF2v60YZKiOwiwHyYsKXr0tm_QysuN1W4INqABomyR843s3dQqac-yJ0a2AZ7P-3n2_cP7b5efFlfXH9eXq6uFKnMcF3zDKDay5KpgBjaklBU1pCwMJayuZKkZUFyxClOtuNY1L-uEU84gLzHUlJ5nrw6-Q-uCmEMLguKyJrxmpEjE-kBoJ3di8LaT_pdw0oo_Qrq1kD6F04IAo7GSwGmyLmqmZa023GhFJdOgCE9eb-Zu3t2MEKLobJjykT24MYi8plVeUUbyhL7-C334cjPVyNTf9sal51CTqVjxGpc0p2WZqOUDVFoaOqtcD8Ym_ajg7VFBYiLsYyPHEMT665f_YD__O3v945i9uMduQbZxG1w7Tj8tHIPFAVTeheDB3D0SwWKahdvkxDQLYp6FVPZyDnjcdKDvim4_P_0Nh7cDyQ</recordid><startdate>20240305</startdate><enddate>20240305</enddate><creator>Huang, Ruirui</creator><creator>Irish, Vivian F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2943-6604</orcidid></search><sort><creationdate>20240305</creationdate><title>An epigenetic timer regulates the transition from cell division to cell expansion during Arabidopsis petal organogenesis</title><author>Huang, Ruirui ; Irish, Vivian F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-7b530fa67c45feb16a83f164f31598a6d5e3085803dc7dd97690fa375e260e933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Botanical research</topic><topic>Cell division</topic><topic>Cell Division - genetics</topic><topic>Chromatin remodeling</topic><topic>DNA methylation</topic><topic>DNA-directed RNA polymerase</topic><topic>Environmental changes</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Flowers</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetic aspects</topic><topic>Histones</topic><topic>Molecular modelling</topic><topic>Mutation</topic><topic>Organogenesis</topic><topic>Petals</topic><topic>Physiological aspects</topic><topic>Primordia</topic><topic>Proteins</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Ruirui</creatorcontrib><creatorcontrib>Irish, Vivian F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Ruirui</au><au>Irish, Vivian F</au><au>Mittelsten Scheid, Ortrun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An epigenetic timer regulates the transition from cell division to cell expansion during Arabidopsis petal organogenesis</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2024-03-05</date><risdate>2024</risdate><volume>20</volume><issue>3</issue><spage>e1011203</spage><epage>e1011203</epage><pages>e1011203-e1011203</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>A number of studies have demonstrated that epigenetic factors regulate plant developmental timing in response to environmental changes. However, we still have an incomplete view of how epigenetic factors can regulate developmental events such as organogenesis, and the transition from cell division to cell expansion, in plants. The small number of cell types and the relatively simple developmental progression required to form the Arabidopsis petal makes it a good model to investigate the molecular mechanisms driving plant organogenesis. In this study, we investigated how the RABBIT EARS (RBE) transcriptional repressor maintains the downregulation of its downstream direct target, TCP5, long after RBE expression dissipates. We showed that RBE recruits the Groucho/Tup1-like corepressor TOPLESS (TPL) to repress TCP5 transcription in petal primordia. This process involves multiple layers of changes such as remodeling of chromatin accessibility, alteration of RNA polymerase activity, and histone modifications, resulting in an epigenetic memory that is maintained through multiple cell divisions. This memory functions to maintain cell divisions during the early phase of petal development, and its attenuation in a cell division-dependent fashion later in development enables the transition from cell division to cell expansion. Overall, this study unveils a novel mechanism by which the memory of an epigenetic state, and its cell-cycle regulated decay, acts as a timer to precisely control organogenesis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38442104</pmid><doi>10.1371/journal.pgen.1011203</doi><tpages>e1011203</tpages><orcidid>https://orcid.org/0000-0002-2943-6604</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2024-03, Vol.20 (3), p.e1011203-e1011203 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_3069179514 |
source | PubMed Central Free; MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals |
subjects | Arabidopsis Arabidopsis Proteins - metabolism Botanical research Cell division Cell Division - genetics Chromatin remodeling DNA methylation DNA-directed RNA polymerase Environmental changes Epigenesis, Genetic Epigenetic inheritance Epigenetics Flowers Gene expression Gene Expression Regulation, Plant Genetic aspects Histones Molecular modelling Mutation Organogenesis Petals Physiological aspects Primordia Proteins Transcription factors Transcription Factors - metabolism Yeast |
title | An epigenetic timer regulates the transition from cell division to cell expansion during Arabidopsis petal organogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20epigenetic%20timer%20regulates%20the%20transition%20from%20cell%20division%20to%20cell%20expansion%20during%20Arabidopsis%20petal%20organogenesis&rft.jtitle=PLoS%20genetics&rft.au=Huang,%20Ruirui&rft.date=2024-03-05&rft.volume=20&rft.issue=3&rft.spage=e1011203&rft.epage=e1011203&rft.pages=e1011203-e1011203&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1011203&rft_dat=%3Cgale_plos_%3EA790632366%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069179514&rft_id=info:pmid/38442104&rft_galeid=A790632366&rft_doaj_id=oai_doaj_org_article_efd0cae730e9495da9cb7fdc3a5dec17&rfr_iscdi=true |