An epigenetic timer regulates the transition from cell division to cell expansion during Arabidopsis petal organogenesis

A number of studies have demonstrated that epigenetic factors regulate plant developmental timing in response to environmental changes. However, we still have an incomplete view of how epigenetic factors can regulate developmental events such as organogenesis, and the transition from cell division t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2024-03, Vol.20 (3), p.e1011203-e1011203
Hauptverfasser: Huang, Ruirui, Irish, Vivian F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A number of studies have demonstrated that epigenetic factors regulate plant developmental timing in response to environmental changes. However, we still have an incomplete view of how epigenetic factors can regulate developmental events such as organogenesis, and the transition from cell division to cell expansion, in plants. The small number of cell types and the relatively simple developmental progression required to form the Arabidopsis petal makes it a good model to investigate the molecular mechanisms driving plant organogenesis. In this study, we investigated how the RABBIT EARS (RBE) transcriptional repressor maintains the downregulation of its downstream direct target, TCP5, long after RBE expression dissipates. We showed that RBE recruits the Groucho/Tup1-like corepressor TOPLESS (TPL) to repress TCP5 transcription in petal primordia. This process involves multiple layers of changes such as remodeling of chromatin accessibility, alteration of RNA polymerase activity, and histone modifications, resulting in an epigenetic memory that is maintained through multiple cell divisions. This memory functions to maintain cell divisions during the early phase of petal development, and its attenuation in a cell division-dependent fashion later in development enables the transition from cell division to cell expansion. Overall, this study unveils a novel mechanism by which the memory of an epigenetic state, and its cell-cycle regulated decay, acts as a timer to precisely control organogenesis.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1011203