RMDGCN: Prediction of RNA methylation and disease associations based on graph convolutional network with attention mechanism
RNA modification is a post transcriptional modification that occurs in all organisms and plays a crucial role in the stages of RNA life, closely related to many life processes. As one of the newly discovered modifications, N1-methyladenosine (m1A) plays an important role in gene expression regulatio...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2023-12, Vol.19 (12), p.e1011677-e1011677 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1011677 |
---|---|
container_issue | 12 |
container_start_page | e1011677 |
container_title | PLoS computational biology |
container_volume | 19 |
creator | Liu, Lian Zhou, Yumeng Lei, Xiujuan |
description | RNA modification is a post transcriptional modification that occurs in all organisms and plays a crucial role in the stages of RNA life, closely related to many life processes. As one of the newly discovered modifications, N1-methyladenosine (m1A) plays an important role in gene expression regulation, closely related to the occurrence and development of diseases. However, due to the low abundance of m1A, verifying the associations between m1As and diseases through wet experiments requires a great quantity of manpower and resources. In this study, we proposed a computational method for predicting the associations of RNA methylation and disease based on graph convolutional network (RMDGCN) with attention mechanism. We build an adjacency matrix through the collected m1As and diseases associations, and use positive-unlabeled learning to increase the number of positive samples. By extracting the features of m1As and diseases, a heterogeneous network is constructed, and a GCN with attention mechanism is adopted to predict the associations between m1As and diseases. The experimental results indicate that under a 5-fold cross validation, RMDGCN is superior to other methods (AUC = 0.9892 and AUPR = 0.8682). In addition, case studies indicate that RMDGCN can predict the relationships between unknown m1As and diseases. In summary, RMDGCN is an effective method for predicting the associations between m1As and diseases. |
doi_str_mv | 10.1371/journal.pcbi.1011677 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069179252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780598939</galeid><doaj_id>oai_doaj_org_article_20a74e72adff466d89bbd59dcc2cd9b5</doaj_id><sourcerecordid>A780598939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-5bfb5d22e336f0dbf836d44d8dfb0b42f22ceeda9adad79624728fcb757dc73f3</originalsourceid><addsrcrecordid>eNqVkstuEzEUhkcIREvhDRBYYgOLhBl7PB53FwUokUpAAdbW8S1xmBkH26FU4uFxLq0oYoO8sPX7Oxcf_0XxtCrHFWHV67XfhgG68UZJN67KqmoYu1ecVpSSESO0vf_H-aR4FOO6LPORNw-LE9KWlDJcnRa_Fh_eXEzn5-hTMNqp5PyAvEWL-QT1Jq2uO9hLMGikXTQQDYIYvXJ7PSKZFY0ysQywWSHlhx--2-7uoEODSVc-fENXLq0QpGSGfbLeqBUMLvaPiwcWumieHPez4uu7t1-m70eXHy9m08nlSFHM0ohKK6nG2BDS2FJL25JG17VutZWlrLHFWBmjgYMGzXiDa4ZbqySjTCtGLDkrnh_ybjofxXFwUZCy4RXjmOJMzA6E9rAWm-B6CNfCgxN7wYelgJCc6ozAJbDaMAza2rppdMul1JRrpbDSXNKc6-WxWvDftyYm0buoTNfBYPw2CtxyThiuOcvoi7_Qfzc3PlBLyPXdYH0KoPLSpnd54sa6rE9Y_lTecsJzwKs7AZlJ5mdawjZGMfu8-A92fpetD6wKPsZg7O2kqlLsTHnTvtiZUhxNmcOeHV-5lb3Rt0E3LiS_Af8J4Bs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069179252</pqid></control><display><type>article</type><title>RMDGCN: Prediction of RNA methylation and disease associations based on graph convolutional network with attention mechanism</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Liu, Lian ; Zhou, Yumeng ; Lei, Xiujuan</creator><contributor>Alber, Mark</contributor><creatorcontrib>Liu, Lian ; Zhou, Yumeng ; Lei, Xiujuan ; Alber, Mark</creatorcontrib><description>RNA modification is a post transcriptional modification that occurs in all organisms and plays a crucial role in the stages of RNA life, closely related to many life processes. As one of the newly discovered modifications, N1-methyladenosine (m1A) plays an important role in gene expression regulation, closely related to the occurrence and development of diseases. However, due to the low abundance of m1A, verifying the associations between m1As and diseases through wet experiments requires a great quantity of manpower and resources. In this study, we proposed a computational method for predicting the associations of RNA methylation and disease based on graph convolutional network (RMDGCN) with attention mechanism. We build an adjacency matrix through the collected m1As and diseases associations, and use positive-unlabeled learning to increase the number of positive samples. By extracting the features of m1As and diseases, a heterogeneous network is constructed, and a GCN with attention mechanism is adopted to predict the associations between m1As and diseases. The experimental results indicate that under a 5-fold cross validation, RMDGCN is superior to other methods (AUC = 0.9892 and AUPR = 0.8682). In addition, case studies indicate that RMDGCN can predict the relationships between unknown m1As and diseases. In summary, RMDGCN is an effective method for predicting the associations between m1As and diseases.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1011677</identifier><identifier>PMID: 38055721</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Artificial neural networks ; Breast cancer ; Case studies ; Computational Biology ; Decomposition ; Disease ; Enzymes ; Epigenetics ; Gene expression ; Genes ; Genetic aspects ; Genetic transcription ; Geospatial data ; Graph theory ; Learning ; Machine learning ; Manpower ; Methods ; Methylation ; MicroRNAs ; Neural networks ; Physiological aspects ; Proteins ; Research Design ; Ribonucleic acid ; RNA ; RNA - genetics ; RNA Methylation ; RNA modification ; Semantics</subject><ispartof>PLoS computational biology, 2023-12, Vol.19 (12), p.e1011677-e1011677</ispartof><rights>Copyright: © 2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c527t-5bfb5d22e336f0dbf836d44d8dfb0b42f22ceeda9adad79624728fcb757dc73f3</cites><orcidid>0000-0001-5778-5230 ; 0000-0002-9901-1732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,2928,23866,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38055721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Alber, Mark</contributor><creatorcontrib>Liu, Lian</creatorcontrib><creatorcontrib>Zhou, Yumeng</creatorcontrib><creatorcontrib>Lei, Xiujuan</creatorcontrib><title>RMDGCN: Prediction of RNA methylation and disease associations based on graph convolutional network with attention mechanism</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>RNA modification is a post transcriptional modification that occurs in all organisms and plays a crucial role in the stages of RNA life, closely related to many life processes. As one of the newly discovered modifications, N1-methyladenosine (m1A) plays an important role in gene expression regulation, closely related to the occurrence and development of diseases. However, due to the low abundance of m1A, verifying the associations between m1As and diseases through wet experiments requires a great quantity of manpower and resources. In this study, we proposed a computational method for predicting the associations of RNA methylation and disease based on graph convolutional network (RMDGCN) with attention mechanism. We build an adjacency matrix through the collected m1As and diseases associations, and use positive-unlabeled learning to increase the number of positive samples. By extracting the features of m1As and diseases, a heterogeneous network is constructed, and a GCN with attention mechanism is adopted to predict the associations between m1As and diseases. The experimental results indicate that under a 5-fold cross validation, RMDGCN is superior to other methods (AUC = 0.9892 and AUPR = 0.8682). In addition, case studies indicate that RMDGCN can predict the relationships between unknown m1As and diseases. In summary, RMDGCN is an effective method for predicting the associations between m1As and diseases.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Breast cancer</subject><subject>Case studies</subject><subject>Computational Biology</subject><subject>Decomposition</subject><subject>Disease</subject><subject>Enzymes</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Geospatial data</subject><subject>Graph theory</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Manpower</subject><subject>Methods</subject><subject>Methylation</subject><subject>MicroRNAs</subject><subject>Neural networks</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Research Design</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - genetics</subject><subject>RNA Methylation</subject><subject>RNA modification</subject><subject>Semantics</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkstuEzEUhkcIREvhDRBYYgOLhBl7PB53FwUokUpAAdbW8S1xmBkH26FU4uFxLq0oYoO8sPX7Oxcf_0XxtCrHFWHV67XfhgG68UZJN67KqmoYu1ecVpSSESO0vf_H-aR4FOO6LPORNw-LE9KWlDJcnRa_Fh_eXEzn5-hTMNqp5PyAvEWL-QT1Jq2uO9hLMGikXTQQDYIYvXJ7PSKZFY0ysQywWSHlhx--2-7uoEODSVc-fENXLq0QpGSGfbLeqBUMLvaPiwcWumieHPez4uu7t1-m70eXHy9m08nlSFHM0ohKK6nG2BDS2FJL25JG17VutZWlrLHFWBmjgYMGzXiDa4ZbqySjTCtGLDkrnh_ybjofxXFwUZCy4RXjmOJMzA6E9rAWm-B6CNfCgxN7wYelgJCc6ozAJbDaMAza2rppdMul1JRrpbDSXNKc6-WxWvDftyYm0buoTNfBYPw2CtxyThiuOcvoi7_Qfzc3PlBLyPXdYH0KoPLSpnd54sa6rE9Y_lTecsJzwKs7AZlJ5mdawjZGMfu8-A92fpetD6wKPsZg7O2kqlLsTHnTvtiZUhxNmcOeHV-5lb3Rt0E3LiS_Af8J4Bs</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Liu, Lian</creator><creator>Zhou, Yumeng</creator><creator>Lei, Xiujuan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5778-5230</orcidid><orcidid>https://orcid.org/0000-0002-9901-1732</orcidid></search><sort><creationdate>20231201</creationdate><title>RMDGCN: Prediction of RNA methylation and disease associations based on graph convolutional network with attention mechanism</title><author>Liu, Lian ; Zhou, Yumeng ; Lei, Xiujuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-5bfb5d22e336f0dbf836d44d8dfb0b42f22ceeda9adad79624728fcb757dc73f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Breast cancer</topic><topic>Case studies</topic><topic>Computational Biology</topic><topic>Decomposition</topic><topic>Disease</topic><topic>Enzymes</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Geospatial data</topic><topic>Graph theory</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Manpower</topic><topic>Methods</topic><topic>Methylation</topic><topic>MicroRNAs</topic><topic>Neural networks</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Research Design</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - genetics</topic><topic>RNA Methylation</topic><topic>RNA modification</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lian</creatorcontrib><creatorcontrib>Zhou, Yumeng</creatorcontrib><creatorcontrib>Lei, Xiujuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lian</au><au>Zhou, Yumeng</au><au>Lei, Xiujuan</au><au>Alber, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RMDGCN: Prediction of RNA methylation and disease associations based on graph convolutional network with attention mechanism</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>19</volume><issue>12</issue><spage>e1011677</spage><epage>e1011677</epage><pages>e1011677-e1011677</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>RNA modification is a post transcriptional modification that occurs in all organisms and plays a crucial role in the stages of RNA life, closely related to many life processes. As one of the newly discovered modifications, N1-methyladenosine (m1A) plays an important role in gene expression regulation, closely related to the occurrence and development of diseases. However, due to the low abundance of m1A, verifying the associations between m1As and diseases through wet experiments requires a great quantity of manpower and resources. In this study, we proposed a computational method for predicting the associations of RNA methylation and disease based on graph convolutional network (RMDGCN) with attention mechanism. We build an adjacency matrix through the collected m1As and diseases associations, and use positive-unlabeled learning to increase the number of positive samples. By extracting the features of m1As and diseases, a heterogeneous network is constructed, and a GCN with attention mechanism is adopted to predict the associations between m1As and diseases. The experimental results indicate that under a 5-fold cross validation, RMDGCN is superior to other methods (AUC = 0.9892 and AUPR = 0.8682). In addition, case studies indicate that RMDGCN can predict the relationships between unknown m1As and diseases. In summary, RMDGCN is an effective method for predicting the associations between m1As and diseases.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38055721</pmid><doi>10.1371/journal.pcbi.1011677</doi><tpages>e1011677</tpages><orcidid>https://orcid.org/0000-0001-5778-5230</orcidid><orcidid>https://orcid.org/0000-0002-9901-1732</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2023-12, Vol.19 (12), p.e1011677-e1011677 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_3069179252 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Artificial neural networks Breast cancer Case studies Computational Biology Decomposition Disease Enzymes Epigenetics Gene expression Genes Genetic aspects Genetic transcription Geospatial data Graph theory Learning Machine learning Manpower Methods Methylation MicroRNAs Neural networks Physiological aspects Proteins Research Design Ribonucleic acid RNA RNA - genetics RNA Methylation RNA modification Semantics |
title | RMDGCN: Prediction of RNA methylation and disease associations based on graph convolutional network with attention mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RMDGCN:%20Prediction%20of%20RNA%20methylation%20and%20disease%20associations%20based%20on%20graph%20convolutional%20network%20with%20attention%20mechanism&rft.jtitle=PLoS%20computational%20biology&rft.au=Liu,%20Lian&rft.date=2023-12-01&rft.volume=19&rft.issue=12&rft.spage=e1011677&rft.epage=e1011677&rft.pages=e1011677-e1011677&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1011677&rft_dat=%3Cgale_plos_%3EA780598939%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069179252&rft_id=info:pmid/38055721&rft_galeid=A780598939&rft_doaj_id=oai_doaj_org_article_20a74e72adff466d89bbd59dcc2cd9b5&rfr_iscdi=true |