RMDGCN: Prediction of RNA methylation and disease associations based on graph convolutional network with attention mechanism

RNA modification is a post transcriptional modification that occurs in all organisms and plays a crucial role in the stages of RNA life, closely related to many life processes. As one of the newly discovered modifications, N1-methyladenosine (m1A) plays an important role in gene expression regulatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2023-12, Vol.19 (12), p.e1011677-e1011677
Hauptverfasser: Liu, Lian, Zhou, Yumeng, Lei, Xiujuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RNA modification is a post transcriptional modification that occurs in all organisms and plays a crucial role in the stages of RNA life, closely related to many life processes. As one of the newly discovered modifications, N1-methyladenosine (m1A) plays an important role in gene expression regulation, closely related to the occurrence and development of diseases. However, due to the low abundance of m1A, verifying the associations between m1As and diseases through wet experiments requires a great quantity of manpower and resources. In this study, we proposed a computational method for predicting the associations of RNA methylation and disease based on graph convolutional network (RMDGCN) with attention mechanism. We build an adjacency matrix through the collected m1As and diseases associations, and use positive-unlabeled learning to increase the number of positive samples. By extracting the features of m1As and diseases, a heterogeneous network is constructed, and a GCN with attention mechanism is adopted to predict the associations between m1As and diseases. The experimental results indicate that under a 5-fold cross validation, RMDGCN is superior to other methods (AUC = 0.9892 and AUPR = 0.8682). In addition, case studies indicate that RMDGCN can predict the relationships between unknown m1As and diseases. In summary, RMDGCN is an effective method for predicting the associations between m1As and diseases.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1011677