Short-term Hebbian learning can implement transformer-like attention
Transformers have revolutionized machine learning models of language and vision, but their connection with neuroscience remains tenuous. Built from attention layers, they require a mass comparison of queries and keys that is difficult to perform using traditional neural circuits. Here, we show that...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2024-01, Vol.20 (1), p.e1011843-e1011843 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transformers have revolutionized machine learning models of language and vision, but their connection with neuroscience remains tenuous. Built from attention layers, they require a mass comparison of queries and keys that is difficult to perform using traditional neural circuits. Here, we show that neurons can implement attention-like computations using short-term, Hebbian synaptic potentiation. We call our mechanism the match-and-control principle and it proposes that when activity in an axon is synchronous, or matched, with the somatic activity of a neuron that it synapses onto, the synapse can be briefly strongly potentiated, allowing the axon to take over, or control, the activity of the downstream neuron for a short time. In our scheme, the keys and queries are represented as spike trains and comparisons between the two are performed in individual spines allowing for hundreds of key comparisons per query and roughly as many keys and queries as there are neurons in the network. |
---|---|
ISSN: | 1553-7358 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1011843 |