Sequential neuronal processing of number values, abstract decision, and action in the primate prefrontal cortex

Decision-making requires processing of sensory information, comparing the gathered evidence to make a judgment, and performing the action to communicate it. How neuronal representations transform during this cascade of representations remains a matter of debate. Here, we studied the succession of ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2024-02, Vol.22 (2), p.e3002520
Hauptverfasser: Viswanathan, Pooja, Stein, Anna M, Nieder, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Decision-making requires processing of sensory information, comparing the gathered evidence to make a judgment, and performing the action to communicate it. How neuronal representations transform during this cascade of representations remains a matter of debate. Here, we studied the succession of neuronal representations in the primate prefrontal cortex (PFC). We trained monkeys to judge whether a pair of sequentially presented displays had the same number of items. We used a combination of single neuron and population-level analyses and discovered a sequential transformation of represented information with trial progression. While numerical values were initially represented with high precision and in conjunction with detailed information such as order, the decision was encoded in a low-dimensional subspace of neural activity. This decision encoding was invariant to both retrospective numerical values and prospective motor plans, representing only the binary judgment of "same number" versus "different number," thus facilitating the generalization of decisions to novel number pairs. We conclude that this transformation of neuronal codes within the prefrontal cortex supports cognitive flexibility and generalizability of decisions to new conditions.
ISSN:1545-7885
1544-9173
1545-7885
DOI:10.1371/journal.pbio.3002520