The specious art of single-cell genomics

Dimensionality reduction is standard practice for filtering noise and identifying relevant features in large-scale data analyses. In biology, single-cell genomics studies typically begin with reduction to 2 or 3 dimensions to produce "all-in-one" visuals of the data that are amenable to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2023-08, Vol.19 (8), p.e1011288-e1011288
Hauptverfasser: Chari, Tara, Pachter, Lior
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dimensionality reduction is standard practice for filtering noise and identifying relevant features in large-scale data analyses. In biology, single-cell genomics studies typically begin with reduction to 2 or 3 dimensions to produce "all-in-one" visuals of the data that are amenable to the human eye, and these are subsequently used for qualitative and quantitative exploratory analysis. However, there is little theoretical support for this practice, and we show that extreme dimension reduction, from hundreds or thousands of dimensions to 2, inevitably induces significant distortion of high-dimensional datasets. We therefore examine the practical implications of low-dimensional embedding of single-cell data and find that extensive distortions and inconsistent practices make such embeddings counter-productive for exploratory, biological analyses. In lieu of this, we discuss alternative approaches for conducting targeted embedding and feature exploration to enable hypothesis-driven biological discovery.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1011288