Cost-effectiveness of implementing risk-based cardiovascular disease (CVD) management using updated WHO CVD risk prediction charts in India
Introduction The World Health Organization (WHO) has released the updated cardiovascular disease (CVD) risk prediction charts in 2019 for each of the 21 Global Burden of Disease regions. The WHO advocates countries to implement population-based CVD risk assessment and management using these updated...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-08, Vol.18 (8), p.e0285542-e0285542 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduction The World Health Organization (WHO) has released the updated cardiovascular disease (CVD) risk prediction charts in 2019 for each of the 21 Global Burden of Disease regions. The WHO advocates countries to implement population-based CVD risk assessment and management using these updated charts for preventing and controlling CVDs. Objective To assess the cost-effectiveness of implementing risk-based CVD management using updated WHO CVD risk prediction charts in India Methods We developed a decision tree combined with Markov Model to simulate implementing two community-based CVD risk screening strategies (interventions) compared with the current no-screening scenario. In the first strategy, the whole population is initially screened using the WHO non-lab-based CVD risk assessment method, and those with [greater than or equal to]10% CVD risk are subjected to WHO lab-based CVD risk assessment (two-stage screening). In the second strategy, the whole population is subjected only to the lab-based CVD risk assessment (single-stage screening). A mathematical cohort of those aged [greater than or equal to]40 years with no history of CVD events was simulated over a lifetime horizon with three months of cycle length. Data for the model were derived from a primary study and secondary sources. Incremental cost-effectiveness ratios (ICERs) were determined for the screening strategies and sensitivity analyses. Results The discounted Incremental cost-effectiveness ratio per QALY gained for both the two-stage (US$ 105; â¹ 8,656) and single-stage (US$ 1073; â¹ 88,588) screening strategies were cost-effective at an implementation effect of 40% when compared with no screening scenario. Implementing CVD screening strategies are estimated to cause substantial reduction in the number of CVD events in the population compared to the no screening scenario. Conclusion In India, both CVD screening strategies would be cost-effective, and implementing the two-staged screening would be more cost-effective. Our findings support implementing population-based CVD screening in India. Future studies shall assess the budget impact of these strategies at different implementation coverage levels. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0285542 |