The role of EII complex in the bacterial responses to the glucose-survey in clinical Klebsiella pneumoniae isolates
Type 3 fimbriae in Klebsiella pneumoniae are important for bacterial colonization on abiotic and biotic surfaces. The major subunit of type 3 fimbriae (MrkA) is increased by overexpression of EtcABC, an EII complex of phosphoenolpyruvate:carbohydrate phosphotransferase systems (PTSs), through cAMP-c...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-08, Vol.18 (8), p.e0289759-e0289759 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Type 3 fimbriae in Klebsiella pneumoniae are important for bacterial colonization on abiotic and biotic surfaces. The major subunit of type 3 fimbriae (MrkA) is increased by overexpression of EtcABC, an EII complex of phosphoenolpyruvate:carbohydrate phosphotransferase systems (PTSs), through cAMP-cAMP receptor protein (cAMP-CRP) in K. pneumoniae STU1. Here, we further characterized the relations between the amount of etcABC mRNA and MrkA in 78 clinical K. pneumoniae isolates incubated in high levels of glucose. By Western blotting, we observed that MrkA of 29 isolates were not decreased much by high levels of glucose (Group A) but MrkA of other 49 isolates were significantly reduced (Group B) in the same condition. The bacterial biofilms on abiotic surfaces and colonization in the Caenorhabditis elegans of representative isolates in the Group A were not affected by high levels of glucose. However, the biofilm and colonization in the worm of clinical isolates in the Group B were much reduced by high levels of glucose. After quantification by real time RT-PCR, 76% of Group A but just 10% of Group B showed high amount of etcA mRNA. In summary, our results suggested that for most of K. pneumoniae clinical isolates, the amount of etcABC mRNA was positively related to their type 3 fimbriae production in a high level of glucose, thereby to their biofilm formation and colonization in the worm. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0289759 |