Better data for decision-making through Bayesian imputation of suppressed provisional COVID-19 death counts
To facilitate use of timely, granular, and publicly available data on COVID-19 mortality, we provide a method for imputing suppressed COVID-19 death counts in the National Center for Health Statistic's 2020 provisional mortality data by quarter, county, and age. We used a Bayesian approach to i...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-08, Vol.18 (8), p.e0288961-e0288961 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To facilitate use of timely, granular, and publicly available data on COVID-19 mortality, we provide a method for imputing suppressed COVID-19 death counts in the National Center for Health Statistic's 2020 provisional mortality data by quarter, county, and age.
We used a Bayesian approach to impute suppressed COVID-19 death counts by quarter, county, and age in provisional data for 3,138 US counties. Our model accounts for multilevel data structures; numerous zero death counts among persons aged |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0288961 |