Scikick: A sidekick for workflow clarity and reproducibility during extensive data analysis

Reproducibility is crucial for scientific progress, yet a clear research data analysis workflow is challenging to implement and maintain. As a result, a record of computational steps performed on the data to arrive at the key research findings is often missing. We developed Scikick, a tool that ease...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-07, Vol.18 (7), p.e0289171-e0289171
Hauptverfasser: Carlucci, Matthew, Bareikis, Tadas, Koncevičius, Karolis, Gibas, Povilas, Kriščiūnas, Algimantas, Petronis, Art, Oh, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reproducibility is crucial for scientific progress, yet a clear research data analysis workflow is challenging to implement and maintain. As a result, a record of computational steps performed on the data to arrive at the key research findings is often missing. We developed Scikick, a tool that eases the configuration, execution, and presentation of scientific computational analyses. Scikick allows for workflow configurations with notebooks as the units of execution, defines a standard structure for the project, automatically tracks the defined interdependencies between the data analysis steps, and implements methods to compile all research results into a cohesive final report. Utilities provided by Scikick help turn the complicated management of transparent data analysis workflows into a standardized and feasible practice. Scikick version 0.2.1 code and documentation is available as supplementary material. The Scikick software is available on GitHub (https://github.com/matthewcarlucci/scikick) and is distributed with PyPi (https://pypi.org/project/scikick/) under a GPL-3 license.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0289171