Selection for insecticide resistance can promote Plasmodium falciparum infection in Anopheles

Insecticide resistance is under strong selective pressure in Anopheles mosquitoes due to widespread usage of insecticides in vector control strategies. Resistance mechanisms likely cause changes that profoundly affect mosquito physiology, yet it remains poorly understood how selective pressures impo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2023-06, Vol.19 (6), p.e1011448-e1011448
Hauptverfasser: Adams, Kelsey L, Selland, Emily K, Willett, Bailey C, Carew, John W, Vidoudez, Charles, Singh, Naresh, Catteruccia, Flaminia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Insecticide resistance is under strong selective pressure in Anopheles mosquitoes due to widespread usage of insecticides in vector control strategies. Resistance mechanisms likely cause changes that profoundly affect mosquito physiology, yet it remains poorly understood how selective pressures imposed by insecticides may alter the ability of the mosquito to host and transmit a Plasmodium infection. From pyrethroid-resistant field-derived Anopheles gambiae s.l. mosquitoes, we established resistant (RES) and susceptible (SUS) colonies by either selection for, or loss of insecticide resistance. We show increased oocyst intensity and growth rate as well as increased sporozoite prevalence and intensity in RES compared to SUS females infected with Plasmodium falciparum. The increase in infection intensity in RES females was not associated with the presence of the kdrL1014F mutation and was not impacted by inhibition of Cytochrome P450s. The lipid transporter lipophorin (Lp), which was upregulated in RES compared to SUS, was at least partly implicated in the increased intensity of P. falciparum but not directly involved in the insecticide resistance phenotype. Interestingly, we observed that although P. falciparum infections were not affected when RES females were exposed to permethrin, these females had decreased lipid abundance in the fat body following exposure, pointing to a possible role for lipid mobilization in response to damage caused by insecticide challenge. The finding that selection for insecticide resistance can increase P. falciparum infection intensities and growth rate reinforces the need to assess the overall impact on malaria transmission dynamics caused by selective pressures mosquitoes experience during repeated insecticide challenge.
ISSN:1553-7374
1553-7366
1553-7374
DOI:10.1371/journal.ppat.1011448