Numerical study of granular flow in a slit funnel with a novel structure to avoid particle clogging
To solve the problem of particle clogging in slit funnels and to obtain a stable discharge flow rate, we proposed a new funnel structure, namely the slit baffle funnel. We conducted a systematic investigation using the discrete element method (DEM) to study the effects of funnel half-angle θ, outlet...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-06, Vol.18 (6), p.e0286591-e0286591 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To solve the problem of particle clogging in slit funnels and to obtain a stable discharge flow rate, we proposed a new funnel structure, namely the slit baffle funnel. We conducted a systematic investigation using the discrete element method (DEM) to study the effects of funnel half-angle θ, outlet width W, and baffle height H on flow rate and flow pattern. We found that the proposed structure could effectively avoid particle clogging and guarantee a continuous and stable flow rate with small outlet width. Under the condition of H >3 d, a bigger flow rate was obtained at a smaller funnel half-angle. This new funnel structure could be applied to solve clogging problems associated with granular matter in the slit geometry in mining, agriculture, food, and pharmaceuticals. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0286591 |