Genome analysis of biosurfactant producing bacterium, Bacillus tequilensis
Bioremediation is crucial for recuperating polluted water and soil. By expanding the surface area of substrates, biosurfactants play a vital role in bioremediation. Biosurfactant-producing microbes release certain biosurfactant compounds, which are promoted for oil spill remediation. In the present...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-06, Vol.18 (6), p.e0285994-e0285994 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bioremediation is crucial for recuperating polluted water and soil. By expanding the surface area of substrates, biosurfactants play a vital role in bioremediation. Biosurfactant-producing microbes release certain biosurfactant compounds, which are promoted for oil spill remediation. In the present investigation, a biosurfactant-producing bacterium Bacillus tequilensis was isolated from Chilika Lake, Odisha, India (latitude and longitude: 19.8450 N 85.4788 E). Whole-Genome Sequencing (WGS) of Bacillus tequilensis was carried out using Illumina NextSeq 500. The size of the whole genome of Bacillus tequilensis was 4.47 MB consisting of 4,478,749 base pairs forming a circular chromosome with 528 scaffolds, 4492 protein-encoding genes (ORFs), 81 tRNA genes, and 114 ribosomal RNA transcription units. The total raw reads were 4209415, and the processed reads were 4058238 with 4492 genes. The whole genome obtained from the present investigation was used for genome annotation, variant calling, variant annotation, and comparative genome analysis with other existing Bacillus species. In this study, a pathway was constructed which describes the biosurfactant metabolism of Bacillus tequilensis. The study identified that genes such as SrfAD, SrfAC, SrfAA and SrfAB are involved in biosurfactant synthesis. The sequence of the genes SrfAD, SrfAC, SrfAA, SrfAB was deposited in GenBank database with accession MUG02427.1, MUG02428.1, MUG02429.1, MUG03515.1 respectively. The whole genome sequence was submitted to GenBank with an accession RMVO00000000 and the raw fastq reads were submitted to SRA, NCBI repository with an accession: SRX5023292. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0285994 |