Prelnc2: A prediction tool for lncRNAs with enhanced multi-level features of RNAs

Long non-coding RNAs (lncRNAs) have been widely studied for their important biological significance. In general, we need to distinguish them from protein coding RNAs (pcRNAs) with similar functions. Based on various strategies, algorithms and tools have been designed and developed to train and valid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-06, Vol.18 (6), p.e0286377-e0286377
Hauptverfasser: Gao, Hua, Gao, Peng, Ye, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Long non-coding RNAs (lncRNAs) have been widely studied for their important biological significance. In general, we need to distinguish them from protein coding RNAs (pcRNAs) with similar functions. Based on various strategies, algorithms and tools have been designed and developed to train and validate such classification capabilities. However, many of them lack certain scalability, versatility, and rely heavily on genome annotation. In this paper, we design a convenient and biologically meaningful classification tool "Prelnc2" using multi-scale position and frequency information of wavelet transform spectrum and generalizes the frequency statistics method. Finally, we used the extracted features and auxiliary features together to train the model and verify it with test data. PreLnc2 achieved 93.2% accuracy for animal and plant transcripts, outperforming PreLnc by 2.1% improvement and our method provides an effective alternative to the prediction of lncRNAs.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0286377