GRACE: Graph autoencoder based single-cell clustering through ensemble similarity learning
Recent advances in single-cell sequencing techniques have enabled gene expression profiling of individual cells in tissue samples so that it can accelerate biomedical research to develop novel therapeutic methods and effective drugs for complex disease. The typical first step in the downstream analy...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-04, Vol.18 (4), p.e0284527-e0284527 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0284527 |
---|---|
container_issue | 4 |
container_start_page | e0284527 |
container_title | PloS one |
container_volume | 18 |
creator | Ha, Jun Seo Jeong, Hyundoo |
description | Recent advances in single-cell sequencing techniques have enabled gene expression profiling of individual cells in tissue samples so that it can accelerate biomedical research to develop novel therapeutic methods and effective drugs for complex disease. The typical first step in the downstream analysis pipeline is classifying cell types through accurate single-cell clustering algorithms. Here, we describe a novel single-cell clustering algorithm, called GRACE (GRaph Autoencoder based single-cell Clustering through Ensemble similarity larning), that can yield highly consistent groups of cells. We construct the cell-to-cell similarity network through the ensemble similarity learning framework, and employ a low-dimensional vector representation for each cell through a graph autoencoder. Through performance assessments using real-world single-cell sequencing datasets, we show that the proposed method can yield accurate single-cell clustering results by achieving higher assessment metric scores. |
doi_str_mv | 10.1371/journal.pone.0284527 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2801217849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745625030</galeid><doaj_id>oai_doaj_org_article_048ce1f3375a4b2b85047a8ed0ad3462</doaj_id><sourcerecordid>A745625030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-92269b63bd745752e0d113219b708c53f668f92edcc520dada8b2b88a99b7a633</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2MVfSRwuqFqVZaVKlcrHgYvlOJPEKyfe2g6i_x4vm1Yb1APKwdH4mXc8rz1J8hKjJaYF_rC1oxukWe7sAEtEOMtI8Sg5xSUli5wg-vjo_yR55v0WoYzyPH-anNACZZyVxWnyc319vrr4mK6d3HWpHIOFQdkaXFpJD3Xq9dAaWCgwJlVm9AFcjKShc3ZsuxQGD31lIHK9NtLpcJsakG6I0PPkSSONhxfTepZ8_3zxbfVlcXm13qzOLxcqZyQsSkLyssppVRcsKzICqMaYElxWBeIqo02e86YkUCuVEVTLWvKKVJzLMhIyp_QseX3Q3RnrxWSLF4QjTHAR24zE5kDUVm7FzuleulthpRZ_A9a1QrqglQGBGFeAG0qLTLJ9nQyxQnKokawpy0nU-jRVG6s-HgqG4KSZic53Bt2J1v4SGGHEKMuiwrtJwdmbEXwQvfZ7g-UAdjwcvCw4YTiib_5BH25voloZO9BDY2NhtRcV59HTnGSIokgtH6DiV0OvVXxEjY7xWcL7WUJkAvwOrRy9F5uv1__PXv2Ys2-P2A6kCZ23ZgzaDn4OsgOonPXeQXPvMkZiPwN3boj9DIhpBmLaq-Mbuk-6e_T0D1UxAEU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801217849</pqid></control><display><type>article</type><title>GRACE: Graph autoencoder based single-cell clustering through ensemble similarity learning</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Ha, Jun Seo ; Jeong, Hyundoo</creator><creatorcontrib>Ha, Jun Seo ; Jeong, Hyundoo</creatorcontrib><description>Recent advances in single-cell sequencing techniques have enabled gene expression profiling of individual cells in tissue samples so that it can accelerate biomedical research to develop novel therapeutic methods and effective drugs for complex disease. The typical first step in the downstream analysis pipeline is classifying cell types through accurate single-cell clustering algorithms. Here, we describe a novel single-cell clustering algorithm, called GRACE (GRaph Autoencoder based single-cell Clustering through Ensemble similarity larning), that can yield highly consistent groups of cells. We construct the cell-to-cell similarity network through the ensemble similarity learning framework, and employ a low-dimensional vector representation for each cell through a graph autoencoder. Through performance assessments using real-world single-cell sequencing datasets, we show that the proposed method can yield accurate single-cell clustering results by achieving higher assessment metric scores.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0284527</identifier><identifier>PMID: 37058497</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Biology and Life Sciences ; Biomedical Research ; Cells ; Cluster Analysis ; Clustering ; Computer and Information Sciences ; DNA sequencing ; Estimates ; Feature selection ; Gene expression ; Gene Expression Profiling - methods ; Genes ; Graphical representations ; Health aspects ; Knowledge ; Learning ; Medical research ; Medicine, Experimental ; Nucleotide sequencing ; Performance assessment ; Physical Sciences ; Research and Analysis Methods ; Similarity ; Single-Cell Analysis</subject><ispartof>PloS one, 2023-04, Vol.18 (4), p.e0284527-e0284527</ispartof><rights>Copyright: © 2023 Ha, Jeong. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Ha, Jeong. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Ha, Jeong 2023 Ha, Jeong</rights><rights>2023 Ha, Jeong. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c642t-92269b63bd745752e0d113219b708c53f668f92edcc520dada8b2b88a99b7a633</cites><orcidid>0000-0002-5641-8620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104345/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104345/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37058497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ha, Jun Seo</creatorcontrib><creatorcontrib>Jeong, Hyundoo</creatorcontrib><title>GRACE: Graph autoencoder based single-cell clustering through ensemble similarity learning</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Recent advances in single-cell sequencing techniques have enabled gene expression profiling of individual cells in tissue samples so that it can accelerate biomedical research to develop novel therapeutic methods and effective drugs for complex disease. The typical first step in the downstream analysis pipeline is classifying cell types through accurate single-cell clustering algorithms. Here, we describe a novel single-cell clustering algorithm, called GRACE (GRaph Autoencoder based single-cell Clustering through Ensemble similarity larning), that can yield highly consistent groups of cells. We construct the cell-to-cell similarity network through the ensemble similarity learning framework, and employ a low-dimensional vector representation for each cell through a graph autoencoder. Through performance assessments using real-world single-cell sequencing datasets, we show that the proposed method can yield accurate single-cell clustering results by achieving higher assessment metric scores.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Biomedical Research</subject><subject>Cells</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Computer and Information Sciences</subject><subject>DNA sequencing</subject><subject>Estimates</subject><subject>Feature selection</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Genes</subject><subject>Graphical representations</subject><subject>Health aspects</subject><subject>Knowledge</subject><subject>Learning</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Nucleotide sequencing</subject><subject>Performance assessment</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Similarity</subject><subject>Single-Cell Analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2MVfSRwuqFqVZaVKlcrHgYvlOJPEKyfe2g6i_x4vm1Yb1APKwdH4mXc8rz1J8hKjJaYF_rC1oxukWe7sAEtEOMtI8Sg5xSUli5wg-vjo_yR55v0WoYzyPH-anNACZZyVxWnyc319vrr4mK6d3HWpHIOFQdkaXFpJD3Xq9dAaWCgwJlVm9AFcjKShc3ZsuxQGD31lIHK9NtLpcJsakG6I0PPkSSONhxfTepZ8_3zxbfVlcXm13qzOLxcqZyQsSkLyssppVRcsKzICqMaYElxWBeIqo02e86YkUCuVEVTLWvKKVJzLMhIyp_QseX3Q3RnrxWSLF4QjTHAR24zE5kDUVm7FzuleulthpRZ_A9a1QrqglQGBGFeAG0qLTLJ9nQyxQnKokawpy0nU-jRVG6s-HgqG4KSZic53Bt2J1v4SGGHEKMuiwrtJwdmbEXwQvfZ7g-UAdjwcvCw4YTiib_5BH25voloZO9BDY2NhtRcV59HTnGSIokgtH6DiV0OvVXxEjY7xWcL7WUJkAvwOrRy9F5uv1__PXv2Ys2-P2A6kCZ23ZgzaDn4OsgOonPXeQXPvMkZiPwN3boj9DIhpBmLaq-Mbuk-6e_T0D1UxAEU</recordid><startdate>20230414</startdate><enddate>20230414</enddate><creator>Ha, Jun Seo</creator><creator>Jeong, Hyundoo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5641-8620</orcidid></search><sort><creationdate>20230414</creationdate><title>GRACE: Graph autoencoder based single-cell clustering through ensemble similarity learning</title><author>Ha, Jun Seo ; Jeong, Hyundoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-92269b63bd745752e0d113219b708c53f668f92edcc520dada8b2b88a99b7a633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Biomedical Research</topic><topic>Cells</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Computer and Information Sciences</topic><topic>DNA sequencing</topic><topic>Estimates</topic><topic>Feature selection</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Genes</topic><topic>Graphical representations</topic><topic>Health aspects</topic><topic>Knowledge</topic><topic>Learning</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Nucleotide sequencing</topic><topic>Performance assessment</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Similarity</topic><topic>Single-Cell Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Jun Seo</creatorcontrib><creatorcontrib>Jeong, Hyundoo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Jun Seo</au><au>Jeong, Hyundoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GRACE: Graph autoencoder based single-cell clustering through ensemble similarity learning</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-04-14</date><risdate>2023</risdate><volume>18</volume><issue>4</issue><spage>e0284527</spage><epage>e0284527</epage><pages>e0284527-e0284527</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Recent advances in single-cell sequencing techniques have enabled gene expression profiling of individual cells in tissue samples so that it can accelerate biomedical research to develop novel therapeutic methods and effective drugs for complex disease. The typical first step in the downstream analysis pipeline is classifying cell types through accurate single-cell clustering algorithms. Here, we describe a novel single-cell clustering algorithm, called GRACE (GRaph Autoencoder based single-cell Clustering through Ensemble similarity larning), that can yield highly consistent groups of cells. We construct the cell-to-cell similarity network through the ensemble similarity learning framework, and employ a low-dimensional vector representation for each cell through a graph autoencoder. Through performance assessments using real-world single-cell sequencing datasets, we show that the proposed method can yield accurate single-cell clustering results by achieving higher assessment metric scores.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37058497</pmid><doi>10.1371/journal.pone.0284527</doi><tpages>e0284527</tpages><orcidid>https://orcid.org/0000-0002-5641-8620</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2023-04, Vol.18 (4), p.e0284527-e0284527 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2801217849 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Algorithms Analysis Biology and Life Sciences Biomedical Research Cells Cluster Analysis Clustering Computer and Information Sciences DNA sequencing Estimates Feature selection Gene expression Gene Expression Profiling - methods Genes Graphical representations Health aspects Knowledge Learning Medical research Medicine, Experimental Nucleotide sequencing Performance assessment Physical Sciences Research and Analysis Methods Similarity Single-Cell Analysis |
title | GRACE: Graph autoencoder based single-cell clustering through ensemble similarity learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GRACE:%20Graph%20autoencoder%20based%20single-cell%20clustering%20through%20ensemble%20similarity%20learning&rft.jtitle=PloS%20one&rft.au=Ha,%20Jun%20Seo&rft.date=2023-04-14&rft.volume=18&rft.issue=4&rft.spage=e0284527&rft.epage=e0284527&rft.pages=e0284527-e0284527&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0284527&rft_dat=%3Cgale_plos_%3EA745625030%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2801217849&rft_id=info:pmid/37058497&rft_galeid=A745625030&rft_doaj_id=oai_doaj_org_article_048ce1f3375a4b2b85047a8ed0ad3462&rfr_iscdi=true |