GRACE: Graph autoencoder based single-cell clustering through ensemble similarity learning

Recent advances in single-cell sequencing techniques have enabled gene expression profiling of individual cells in tissue samples so that it can accelerate biomedical research to develop novel therapeutic methods and effective drugs for complex disease. The typical first step in the downstream analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-04, Vol.18 (4), p.e0284527-e0284527
Hauptverfasser: Ha, Jun Seo, Jeong, Hyundoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent advances in single-cell sequencing techniques have enabled gene expression profiling of individual cells in tissue samples so that it can accelerate biomedical research to develop novel therapeutic methods and effective drugs for complex disease. The typical first step in the downstream analysis pipeline is classifying cell types through accurate single-cell clustering algorithms. Here, we describe a novel single-cell clustering algorithm, called GRACE (GRaph Autoencoder based single-cell Clustering through Ensemble similarity larning), that can yield highly consistent groups of cells. We construct the cell-to-cell similarity network through the ensemble similarity learning framework, and employ a low-dimensional vector representation for each cell through a graph autoencoder. Through performance assessments using real-world single-cell sequencing datasets, we show that the proposed method can yield accurate single-cell clustering results by achieving higher assessment metric scores.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0284527