Identification of Crown of Thorns Starfish (COTS) using Convolutional Neural Network (CNN) and attention model
Coral reefs play important roles in the marine ecosystem, from providing shelter to aquatic lives to being a source of income to others. However, they are in danger from outbreaks of species like the Crown of Thorns Starfish (COTS) and the widespread coral bleaching from rising sea temperatures. The...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-04, Vol.18 (4), p.e0283121-e0283121 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coral reefs play important roles in the marine ecosystem, from providing shelter to aquatic lives to being a source of income to others. However, they are in danger from outbreaks of species like the Crown of Thorns Starfish (COTS) and the widespread coral bleaching from rising sea temperatures. The identification of COTS for detecting outbreaks is a challenging task and is often done through snorkelling and diving activities with limited range, where strong currents result in poor image capture, damage of capturing equipment, and are of high risks. This paper proposes a novel approach for the automatic detection of COTS based Convolutional Neural Network (CNN) with an enhanced attention module. Different pre-trained CNN models, namely, VGG19 and MobileNetV2 have been applied to our dataset with the aim of detecting and classifying COTS using transfer learning. The architecture of the pre-trained models was optimised using ADAM optimisers and an accuracy of 87.1% was achieved for VGG19 and 80.2% for the MobileNetV2. The attention model was developed and added to the CNN to determine which features in the starfish were influencing the classification. The enhanced model attained an accuracy of 92.6% while explaining the causal features in COTS. The mean average precision of the enhanced VGG-19 with the addition of the attention model was 95% showing an increase of 2% compared to only the enhanced VGG-19 model. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0283121 |