Preliminary study on the application of bioimpedance analysis to measure the psoas major muscle in older adults
For the assessment of sarcopenia or other geriatric frailty syndromes, psoas major area may be one of the primary indicators. Aim to develop and cross-validate the psoas cross-sectional area estimation equation of L3-L4 of the elderly over 60 years old by bioelectrical impedance analysis (BIA). Nine...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-03, Vol.18 (3), p.e0275884-e0275884 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the assessment of sarcopenia or other geriatric frailty syndromes, psoas major area may be one of the primary indicators. Aim to develop and cross-validate the psoas cross-sectional area estimation equation of L3-L4 of the elderly over 60 years old by bioelectrical impedance analysis (BIA). Ninety-two older adults with normal mobility were enrolled (47 females, 45 males), and were randomly divided into a modeling group (MG, n = 62) and validation group (VG, n = 30). Computed tomography (CT) was used to measure the psoas major area at the' L3-L4 lumbar vertebrae height as a predictor. Estimated variables were height (h), whole body impedance (Zwhole), whole body impedance index (h2/Zwhole, WBI), age, gender (female = 0, male = 1), and body weight (weight) by standing BIA. Relevant variables were estimated using stepwise regression analysis. Model performance was confirmed by cross-validation. BIA estimation equation for PMM obtained from the MG was: (PMMBIA = 0.183 h2/Z- 0.223 age + 4.443 gender + 5.727, r2 = 0.702, n = 62, SEE = 2.432 cm2, p < 0.001). The correlation coefficient r obtained by incorporating the VG data into the PMM equation was 0.846, and the LOA ranged from -4.55 to 4.75 cm2. PMMBIA and PMMCT both correlate highly with MG or VG with small LOA. The fast and convenient standing BIA for measuring PMM may be a promising method that is worth developing. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0275884 |