A priori and a posteriori error analysis of the first order hyperbolic equation by using DG method

In this research article, a discontinuous Galerkin method with a weighted parameter θ and a penalty parameter γ is proposed for solving the first order hyperbolic equation. The key aim of this method is to design an error estimation for both a priori and a posteriori error analysis on general finite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-03, Vol.18 (3), p.e0277126-e0277126
Hauptverfasser: Hossain, Muhammad Shakhawat, Xiong, Chunguang, Sun, Huafei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0277126
container_issue 3
container_start_page e0277126
container_title PloS one
container_volume 18
creator Hossain, Muhammad Shakhawat
Xiong, Chunguang
Sun, Huafei
description In this research article, a discontinuous Galerkin method with a weighted parameter θ and a penalty parameter γ is proposed for solving the first order hyperbolic equation. The key aim of this method is to design an error estimation for both a priori and a posteriori error analysis on general finite element meshes. It is also exposed to the reliability and effectiveness of both parameters in the order of convergence of the solutions. For a posteriori error estimation, residual adaptive mesh- refining algorithm is employed. A series of numerical experiments are illustrated that demonstrate the efficiency of the method.
doi_str_mv 10.1371/journal.pone.0277126
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2792881975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743646001</galeid><doaj_id>oai_doaj_org_article_2f8e8bea11e2403c9897ba7157eb5984</doaj_id><sourcerecordid>A743646001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-66ea8a2e9f4365f6ccd60c5bf873b1213c2429cacd5c20916cf837cf0a8b9bde3</originalsourceid><addsrcrecordid>eNqNk01vEzEQhlcIREvhHyCwhITgkGB7d_1xqqICJVKlSnxdLa93nLjarFPbi8i_xyHbKot6QD7YHj_z2jOeKYqXBM9JycmHGz-EXnfzre9hjinnhLJHxSmRJZ0xisvHR-uT4lmMNxjXpWDsaXFSMilZ3p0WzQJtg_PBId23SKOtjwkOBgjBh2zW3S66iLxFaQ3IuhAT8qGFgNa7LYTGd84guB10cr5HzQ4N0fUr9PESbSCtffu8eGJ1F-HFOJ8VPz5_-n7xZXZ1fbm8WFzNDKtomjEGWmgK0lYlqy0zpmXY1I0VvGwIJaWhFZVGm7Y2FEvCjBUlNxZr0cimhfKseH3Q3XY-qjE9UVEuqRBE8joTywPRen2jctwbHXbKa6f-GnxYKR2SMx0oagWIBjQhQCtcGikkbzQnNYemlqLKWufjbUOzgdZAn4LuJqLTk96t1cr_UgRjRhkTWeHdqBD87QAxqY2LBrpO9-CHw8MlZpjv0Tf_oA-HN1IrnSNwvfX5YrMXVQuek1oxjEmm5g9QebSwcSYXk3XZPnF4P3HITILfaaWHGNXy29f_Z69_Ttm3R-wadJfW0XfDvoziFKwOoAk-xgD2PssEq30v3GVD7XtBjb2Q3V4d_9C9013xl38A1PkEMA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792881975</pqid></control><display><type>article</type><title>A priori and a posteriori error analysis of the first order hyperbolic equation by using DG method</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hossain, Muhammad Shakhawat ; Xiong, Chunguang ; Sun, Huafei</creator><contributor>Kavallaris, Nikos</contributor><creatorcontrib>Hossain, Muhammad Shakhawat ; Xiong, Chunguang ; Sun, Huafei ; Kavallaris, Nikos</creatorcontrib><description>In this research article, a discontinuous Galerkin method with a weighted parameter θ and a penalty parameter γ is proposed for solving the first order hyperbolic equation. The key aim of this method is to design an error estimation for both a priori and a posteriori error analysis on general finite element meshes. It is also exposed to the reliability and effectiveness of both parameters in the order of convergence of the solutions. For a posteriori error estimation, residual adaptive mesh- refining algorithm is employed. A series of numerical experiments are illustrated that demonstrate the efficiency of the method.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0277126</identifier><identifier>PMID: 36996053</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptive algorithms ; Algorithms ; Analysis ; Approximation ; Computer and Information Sciences ; Data mining ; Differential equations ; Engineering and Technology ; Error analysis ; Evaluation ; Finite Element Analysis ; Finite element method ; Functions, Exponential ; Galerkin method ; Hypotheses ; Mathematical functions ; Methods ; Numerical experiments ; Parameters ; Partial differential equations ; Physical Sciences ; Records ; Reproducibility of Results ; Research and Analysis Methods</subject><ispartof>PloS one, 2023-03, Vol.18 (3), p.e0277126-e0277126</ispartof><rights>Copyright: © 2023 Hossain et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Hossain et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Hossain et al 2023 Hossain et al</rights><rights>2023 Hossain et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c642t-66ea8a2e9f4365f6ccd60c5bf873b1213c2429cacd5c20916cf837cf0a8b9bde3</cites><orcidid>0000-0001-7509-4652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062668/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062668/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36996053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kavallaris, Nikos</contributor><creatorcontrib>Hossain, Muhammad Shakhawat</creatorcontrib><creatorcontrib>Xiong, Chunguang</creatorcontrib><creatorcontrib>Sun, Huafei</creatorcontrib><title>A priori and a posteriori error analysis of the first order hyperbolic equation by using DG method</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In this research article, a discontinuous Galerkin method with a weighted parameter θ and a penalty parameter γ is proposed for solving the first order hyperbolic equation. The key aim of this method is to design an error estimation for both a priori and a posteriori error analysis on general finite element meshes. It is also exposed to the reliability and effectiveness of both parameters in the order of convergence of the solutions. For a posteriori error estimation, residual adaptive mesh- refining algorithm is employed. A series of numerical experiments are illustrated that demonstrate the efficiency of the method.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Computer and Information Sciences</subject><subject>Data mining</subject><subject>Differential equations</subject><subject>Engineering and Technology</subject><subject>Error analysis</subject><subject>Evaluation</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Functions, Exponential</subject><subject>Galerkin method</subject><subject>Hypotheses</subject><subject>Mathematical functions</subject><subject>Methods</subject><subject>Numerical experiments</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Physical Sciences</subject><subject>Records</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01vEzEQhlcIREvhHyCwhITgkGB7d_1xqqICJVKlSnxdLa93nLjarFPbi8i_xyHbKot6QD7YHj_z2jOeKYqXBM9JycmHGz-EXnfzre9hjinnhLJHxSmRJZ0xisvHR-uT4lmMNxjXpWDsaXFSMilZ3p0WzQJtg_PBId23SKOtjwkOBgjBh2zW3S66iLxFaQ3IuhAT8qGFgNa7LYTGd84guB10cr5HzQ4N0fUr9PESbSCtffu8eGJ1F-HFOJ8VPz5_-n7xZXZ1fbm8WFzNDKtomjEGWmgK0lYlqy0zpmXY1I0VvGwIJaWhFZVGm7Y2FEvCjBUlNxZr0cimhfKseH3Q3XY-qjE9UVEuqRBE8joTywPRen2jctwbHXbKa6f-GnxYKR2SMx0oagWIBjQhQCtcGikkbzQnNYemlqLKWufjbUOzgdZAn4LuJqLTk96t1cr_UgRjRhkTWeHdqBD87QAxqY2LBrpO9-CHw8MlZpjv0Tf_oA-HN1IrnSNwvfX5YrMXVQuek1oxjEmm5g9QebSwcSYXk3XZPnF4P3HITILfaaWHGNXy29f_Z69_Ttm3R-wadJfW0XfDvoziFKwOoAk-xgD2PssEq30v3GVD7XtBjb2Q3V4d_9C9013xl38A1PkEMA</recordid><startdate>20230330</startdate><enddate>20230330</enddate><creator>Hossain, Muhammad Shakhawat</creator><creator>Xiong, Chunguang</creator><creator>Sun, Huafei</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7509-4652</orcidid></search><sort><creationdate>20230330</creationdate><title>A priori and a posteriori error analysis of the first order hyperbolic equation by using DG method</title><author>Hossain, Muhammad Shakhawat ; Xiong, Chunguang ; Sun, Huafei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-66ea8a2e9f4365f6ccd60c5bf873b1213c2429cacd5c20916cf837cf0a8b9bde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Computer and Information Sciences</topic><topic>Data mining</topic><topic>Differential equations</topic><topic>Engineering and Technology</topic><topic>Error analysis</topic><topic>Evaluation</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Functions, Exponential</topic><topic>Galerkin method</topic><topic>Hypotheses</topic><topic>Mathematical functions</topic><topic>Methods</topic><topic>Numerical experiments</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Physical Sciences</topic><topic>Records</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, Muhammad Shakhawat</creatorcontrib><creatorcontrib>Xiong, Chunguang</creatorcontrib><creatorcontrib>Sun, Huafei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, Muhammad Shakhawat</au><au>Xiong, Chunguang</au><au>Sun, Huafei</au><au>Kavallaris, Nikos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A priori and a posteriori error analysis of the first order hyperbolic equation by using DG method</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-03-30</date><risdate>2023</risdate><volume>18</volume><issue>3</issue><spage>e0277126</spage><epage>e0277126</epage><pages>e0277126-e0277126</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this research article, a discontinuous Galerkin method with a weighted parameter θ and a penalty parameter γ is proposed for solving the first order hyperbolic equation. The key aim of this method is to design an error estimation for both a priori and a posteriori error analysis on general finite element meshes. It is also exposed to the reliability and effectiveness of both parameters in the order of convergence of the solutions. For a posteriori error estimation, residual adaptive mesh- refining algorithm is employed. A series of numerical experiments are illustrated that demonstrate the efficiency of the method.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36996053</pmid><doi>10.1371/journal.pone.0277126</doi><tpages>e0277126</tpages><orcidid>https://orcid.org/0000-0001-7509-4652</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-03, Vol.18 (3), p.e0277126-e0277126
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2792881975
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Adaptive algorithms
Algorithms
Analysis
Approximation
Computer and Information Sciences
Data mining
Differential equations
Engineering and Technology
Error analysis
Evaluation
Finite Element Analysis
Finite element method
Functions, Exponential
Galerkin method
Hypotheses
Mathematical functions
Methods
Numerical experiments
Parameters
Partial differential equations
Physical Sciences
Records
Reproducibility of Results
Research and Analysis Methods
title A priori and a posteriori error analysis of the first order hyperbolic equation by using DG method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A53%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20priori%20and%20a%20posteriori%20error%20analysis%20of%20the%20first%20order%20hyperbolic%20equation%20by%20using%20DG%20method&rft.jtitle=PloS%20one&rft.au=Hossain,%20Muhammad%20Shakhawat&rft.date=2023-03-30&rft.volume=18&rft.issue=3&rft.spage=e0277126&rft.epage=e0277126&rft.pages=e0277126-e0277126&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0277126&rft_dat=%3Cgale_plos_%3EA743646001%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792881975&rft_id=info:pmid/36996053&rft_galeid=A743646001&rft_doaj_id=oai_doaj_org_article_2f8e8bea11e2403c9897ba7157eb5984&rfr_iscdi=true