A priori and a posteriori error analysis of the first order hyperbolic equation by using DG method
In this research article, a discontinuous Galerkin method with a weighted parameter θ and a penalty parameter γ is proposed for solving the first order hyperbolic equation. The key aim of this method is to design an error estimation for both a priori and a posteriori error analysis on general finite...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-03, Vol.18 (3), p.e0277126-e0277126 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this research article, a discontinuous Galerkin method with a weighted parameter θ and a penalty parameter γ is proposed for solving the first order hyperbolic equation. The key aim of this method is to design an error estimation for both a priori and a posteriori error analysis on general finite element meshes. It is also exposed to the reliability and effectiveness of both parameters in the order of convergence of the solutions. For a posteriori error estimation, residual adaptive mesh- refining algorithm is employed. A series of numerical experiments are illustrated that demonstrate the efficiency of the method. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0277126 |