Optimal deployment of automated external defibrillators in a long and narrow environment

Public access to automated external defibrillators (AEDs) plays a key role in increasing survival outcomes for patients with out-of-hospital cardiac arrest. Based on the concept of maximizing "rescue benefit" of AEDs, we aimed to propose a systematic methodology for optimizing the deployme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-02, Vol.18 (2), p.e0264098-e0264098
Hauptverfasser: Lin, Chih-Hao, Chu, Kuan-Chao, Lee, Jung-Ting, Kao, Chung-Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Public access to automated external defibrillators (AEDs) plays a key role in increasing survival outcomes for patients with out-of-hospital cardiac arrest. Based on the concept of maximizing "rescue benefit" of AEDs, we aimed to propose a systematic methodology for optimizing the deployment of AEDs, and develop such strategies for long and narrow spaces. We classified the effective coverage of an AED in hot, warm, and cold zones. The AEDs were categorized, according to their accessibility, as fixed, summonable, or patrolling types. The overall rescue benefit of the AEDs were evaluated by the weighted size of their collective hot zones. The optimal strategies for the deployment of AEDs were derived mathematically and numerically verified by computer programs. To maximize the overall rescue benefit of the AEDs, the AEDs should avoid overlapping with each other's coverage as much as possible. Specific rules for optimally deploying one, two, or multiple AEDs, and various types of AEDs are summarized and presented. A methodology for assessing the rescue benefit of deployed AEDs was proposed, and deployment strategies for maximizing the rescue benefit of AEDs along a long, narrow, corridor-like, finite space were derived. The strategies are simple and readily implementable. Our methodology can be easily generalized to search for optimal deployment of AEDs in planar areas or three-dimensional spaces.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0264098