Reinforcement learning approach to control an inverted pendulum: A general framework for educational purposes
Machine learning is often cited as a new paradigm in control theory, but is also often viewed as empirical and less intuitive for students than classical model-based methods. This is particularly the case for reinforcement learning, an approach that does not require any mathematical model to drive a...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-02, Vol.18 (2), p.e0280071-e0280071 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Machine learning is often cited as a new paradigm in control theory, but is also often viewed as empirical and less intuitive for students than classical model-based methods. This is particularly the case for reinforcement learning, an approach that does not require any mathematical model to drive a system inside an unknown environment. This lack of intuition can be an obstacle to design experiments and implement this approach. Reversely there is a need to gain experience and intuition from experiments. In this article, we propose a general framework to reproduce successful experiments and simulations based on the inverted pendulum, a classic problem often used as a benchmark to evaluate control strategies. Two algorithms (basic Q-Learning and Deep Q-Networks (DQN)) are introduced, both in experiments and in simulation with a virtual environment, to give a comprehensive understanding of the approach and discuss its implementation on real systems. In experiments, we show that learning over a few hours is enough to control the pendulum with high accuracy. Simulations provide insights about the effect of each physical parameter and tests the feasibility and robustness of the approach. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0280071 |