Investigating the origin of subtelomeric and centromeric AT-rich elements in Aspergillus flavus
An in silico study of Aspergillus flavus genome stability uncovered significant variations in both coding and non-coding regions. The non-coding insertions uniformly consisted of AT-rich sequences that are evolutionarily maintained, albeit distributed at widely different sites in an array of A. flav...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-02, Vol.18 (2), p.e0279148-e0279148 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An in silico study of Aspergillus flavus genome stability uncovered significant variations in both coding and non-coding regions. The non-coding insertions uniformly consisted of AT-rich sequences that are evolutionarily maintained, albeit distributed at widely different sites in an array of A. flavus strains. A survey of ≥ 2kb AT-rich elements (AT ≥ 70%; ATEs) in non-centromeric regions uncovered two major categories of ATEs. The first category is composed of homologous insertions at ectopic, non-allelic sites that contain homology to transposable elements (TEs; Classes B, C, D, and E). Strains differed significantly in frequency, position, and TE type, but displayed a common enrichment in subtelomeric regions. The TEs were heavily mutated, with patterns consistent with the ancestral activity of repeat-induced point mutations (RIP). The second category consists of a conserved set of novel subtelomeric ATE repeats (Classes A, G, G, H, I and J) which lack discernible TEs and, unlike TEs, display a constant polarity relative to the telomere. Members of one of these classes are derivatives of a progenitor ATE that is predicted to have undergone extensive homologous recombination during evolution. A third category of ATEs consists of ~100 kb regions at each centromere. Centromeric ATEs and TE clusters within these centromeres display a high level of sequence identity between strains. These studies suggest that transposition and RIP are forces in the evolution of subtelomeric and centromeric structure and function. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0279148 |