Long-term respiratory follow-up of ICU hospitalized COVID-19 patients: Prospective cohort study

Coronavirus disease (COVID-19) survivors exhibit multisystemic alterations after hospitalization. Little is known about long-term imaging and pulmonary function of hospitalized patients intensive care unit (ICU) who survive COVID-19. We aimed to investigate long-term consequences of COVID-19 on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-01, Vol.18 (1), p.e0280567-e0280567
Hauptverfasser: Ribeiro Carvalho, Carlos Roberto, Lamas, Celina Almeida, Chate, Rodrigo Caruso, Salge, João Marcos, Sawamura, Marcio Valente Yamada, de Albuquerque, André L P, Toufen Junior, Carlos, Lima, Daniel Mario, Garcia, Michelle Louvaes, Scudeller, Paula Gobi, Nomura, Cesar Higa, Gutierrez, Marco Antonio, Baldi, Bruno Guedes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coronavirus disease (COVID-19) survivors exhibit multisystemic alterations after hospitalization. Little is known about long-term imaging and pulmonary function of hospitalized patients intensive care unit (ICU) who survive COVID-19. We aimed to investigate long-term consequences of COVID-19 on the respiratory system of patients discharged from hospital ICU and identify risk factors associated with chest computed tomography (CT) lesion severity. A prospective cohort study of COVID-19 patients admitted to a tertiary hospital ICU in Brazil (March-August/2020), and followed-up six-twelve months after hospital admission. Initial assessment included: modified Medical Research Council dyspnea scale, SpO2 evaluation, forced vital capacity, and chest X-Ray. Patients with alterations in at least one of these examinations were eligible for CT and pulmonary function tests (PFTs) approximately 16 months after hospital admission. Primary outcome: CT lesion severity (fibrotic-like or non-fibrotic-like). Baseline clinical variables were used to build a machine learning model (ML) to predict the severity of CT lesion. In total, 326 patients (72%) were eligible for CT and PFTs. COVID-19 CT lesions were identified in 81.8% of patients, and half of them showed mild restrictive lung impairment and impaired lung diffusion capacity. Patients with COVID-19 CT findings were stratified into two categories of lesion severity: non-fibrotic-like (50.8%-ground-glass opacities/reticulations) and fibrotic-like (49.2%-traction bronchiectasis/architectural distortion). No association between CT feature severity and altered lung diffusion or functional restrictive/obstructive patterns was found. The ML detected that male sex, ICU and invasive mechanic ventilation (IMV) period, tracheostomy and vasoactive drug need during hospitalization were predictors of CT lesion severity(sensitivity,0.78±0.02;specificity,0.79±0.01;F1-score,0.78±0.02;positive predictive rate,0.78±0.02; accuracy,0.78±0.02; and area under the curve,0.83±0.01). ICU hospitalization due to COVID-19 led to respiratory system alterations six-twelve months after hospital admission. Male sex and critical disease acute phase, characterized by a longer ICU and IMV period, and need for tracheostomy and vasoactive drugs, were risk factors for severe CT lesions six-twelve months after hospital admission.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0280567