Computable early Caenorhabditis elegans embryo with a phase field model

Morphogenesis is a precise and robust dynamic process during metazoan embryogenesis, consisting of both cell proliferation and cell migration. Despite the fact that much is known about specific regulations at molecular level, how cell proliferation and migration together drive the morphogenesis at c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2022-01, Vol.18 (1), p.e1009755-e1009755
Hauptverfasser: Kuang, Xiangyu, Guan, Guoye, Wong, Ming-Kin, Chan, Lu-Yan, Zhao, Zhongying, Tang, Chao, Zhang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Morphogenesis is a precise and robust dynamic process during metazoan embryogenesis, consisting of both cell proliferation and cell migration. Despite the fact that much is known about specific regulations at molecular level, how cell proliferation and migration together drive the morphogenesis at cellular and organismic levels is not well understood. Using Caenorhabditis elegans as the model animal, we present a phase field model to compute early embryonic morphogenesis within a confined eggshell. With physical information about cell division obtained from three-dimensional time-lapse cellular imaging experiments, the model can precisely reproduce the early morphogenesis process as seen in vivo, including time evolution of location and morphology of each cell. Furthermore, the model can be used to reveal key cell-cell attractions critical to the development of C. elegans embryo. Our work demonstrates how genetic programming and physical forces collaborate to drive morphogenesis and provides a predictive model to decipher the underlying mechanism.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1009755